Results 1  10
of
110
Topological strings and (almost) modular forms
, 2007
"... The Bmodel topological string theory on a CalabiYau threefold X has a symmetry group Γ, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H 3 (X). We show that, depending on the cho ..."
Abstract

Cited by 95 (10 self)
 Add to MetaCart
The Bmodel topological string theory on a CalabiYau threefold X has a symmetry group Γ, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H 3 (X). We show that, depending on the choice of polarization, the genus g topological string amplitude is either a holomorphic quasimodular form or an almost holomorphic modular form of weight 0 under Γ. Moreover, at each genus, certain combinations of genus g amplitudes are both modular and holomorphic. We illustrate this for the local CalabiYau manifolds giving rise to SeibergWitten gauge theories in four dimensions and local IP2 and IP1×IP1. As a byproduct, we also obtain a simple way of relating the topological string amplitudes near different points in the moduli space, which we use to give predictions for GromovWitten invariants of the orbifold C 3 / Z3.
Mahler's Measure and Special Values of Lfunctions
, 1998
"... this paper is to describe an attempt to understand and generalize a recent formula of Deninger [1997] by means of systematic numerical experiment. This conjectural formula, ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
this paper is to describe an attempt to understand and generalize a recent formula of Deninger [1997] by means of systematic numerical experiment. This conjectural formula,
Hessian Elliptic Curves and SideChannel Attacks
 of Lecture Notes in Computer Science
, 2001
"... Sidechannel attacks are a recent class of attacks that have been revealed to be very powerful in practice. By measuring some sidechannel information (running time, power consumption, . . . ), an attacker is able to recover some secret data from a carelessly implemented cryptoalgorithm. ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
(Show Context)
Sidechannel attacks are a recent class of attacks that have been revealed to be very powerful in practice. By measuring some sidechannel information (running time, power consumption, . . . ), an attacker is able to recover some secret data from a carelessly implemented cryptoalgorithm.
Constructing Isogenies Between Elliptic Curves Over Finite Fields
 LMS J. Comput. Math
, 1999
"... Let E 1 and E 2 be ordinary elliptic curves over a finite field Fp such that #E1 (Fp ) = #E2 (Fp ). Tate's isogeny theorem states that there is an isogeny from E1 to E2 which is defined over Fp . The goal of this paper is to describe a probabilistic algorithm for constructing such an isogeny. ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
Let E 1 and E 2 be ordinary elliptic curves over a finite field Fp such that #E1 (Fp ) = #E2 (Fp ). Tate's isogeny theorem states that there is an isogeny from E1 to E2 which is defined over Fp . The goal of this paper is to describe a probabilistic algorithm for constructing such an isogeny.
Ranks of twists of elliptic curves and Hilbert’s tenth problem, arxiv:0904.3709v2 [math.NT
"... Abstract. In this paper we investigate the 2Selmer rank in families of quadratic twists of elliptic curves over arbitrary number fields. We give sufficient conditions on an elliptic curve so that it has twists of arbitrary 2Selmer rank, and we give lower bounds for the number of twists (with bound ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
Abstract. In this paper we investigate the 2Selmer rank in families of quadratic twists of elliptic curves over arbitrary number fields. We give sufficient conditions on an elliptic curve so that it has twists of arbitrary 2Selmer rank, and we give lower bounds for the number of twists (with bounded conductor) that have a given 2Selmer rank. As a consequence, under appropriate hypotheses we can find many twists with trivial MordellWeil group, and (assuming the ShafarevichTate conjecture) many others with infinite cyclic MordellWeil group. Using work of Poonen and Shlapentokh, it follows from our results that if the ShafarevichTate conjecture holds, then Hilbert’s Tenth Problem has a negative answer over the ring of integers of every number field. 1. Introduction and
Primes Generated by Elliptic Curves
, 2003
"... For a rational elliptic curve in Weierstrass form, Chudnovsky and Chudnovsky considered the likelihood that the denominators of the xcoordinates of the multiples of a rational point are squares of primes. Assuming the point is the image of a rational point under an isogeny, we use Siegel’s Theorem t ..."
Abstract

Cited by 31 (9 self)
 Add to MetaCart
(Show Context)
For a rational elliptic curve in Weierstrass form, Chudnovsky and Chudnovsky considered the likelihood that the denominators of the xcoordinates of the multiples of a rational point are squares of primes. Assuming the point is the image of a rational point under an isogeny, we use Siegel’s Theorem to prove that only finitely many primes will arise. The same question is considered for elliptic curves in homogeneous form, prompting a visit to Ramanujan’s famous taxicab equation. Finiteness is provable for these curves with no extra assumptions. Finally, consideration is given to the possibilities for prime generation in higher rank.
Explicit 4descents on an elliptic curve
 Acta Arith
, 1996
"... Abstract. It is shown that the obvious method of descending from an element of the 2Selmer group of an elliptic curve, E, will indeed give elements of order 1, 2 or 4 in the WeilChatelet group of E. Explicit algorithms for such a method are given. 1. ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
(Show Context)
Abstract. It is shown that the obvious method of descending from an element of the 2Selmer group of an elliptic curve, E, will indeed give elements of order 1, 2 or 4 in the WeilChatelet group of E. Explicit algorithms for such a method are given. 1.
TWOCOVER DESCENT ON HYPERELLIPTIC CURVES
, 2009
"... We describe an algorithm that determines a set of unramified covers of a given hyperelliptic curve, with the property that any rational point will lift to one of the covers. In particular, if the algorithm returns an empty set, then the hyperelliptic curve has no rational points. This provides a re ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
(Show Context)
We describe an algorithm that determines a set of unramified covers of a given hyperelliptic curve, with the property that any rational point will lift to one of the covers. In particular, if the algorithm returns an empty set, then the hyperelliptic curve has no rational points. This provides a relatively efficiently tested criterion for solvability ofhyperelliptic curves. We also discuss applications of this algorithm to curves ofgenus 1 and to curves with rational points.
Functional equations for Mahler measures of genusone curves
 ALGEBRA AND NUMBER THEORY
"... In this paper we will establish functional equations for Mahler measures of families of genusone twovariable polynomials. These families were previously studied by Beauville [3], and their Mahler measures were considered by Boyd [11] and RodriguezVillegas [19]. Bertin [8], Zagier [26], and Stiens ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
(Show Context)
In this paper we will establish functional equations for Mahler measures of families of genusone twovariable polynomials. These families were previously studied by Beauville [3], and their Mahler measures were considered by Boyd [11] and RodriguezVillegas [19]. Bertin [8], Zagier [26], and Stienstra [24]. Our functional equations allow us to prove identities between Mahler measures that were conjectured by Boyd. As a corollary, we also establish some new transformations for hypergeometric functions.
Efficient Solution of Rational Conics
 Math. Comp
, 1998
"... this paper (section 2), and to Denis Simon for the reference [10]. ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
(Show Context)
this paper (section 2), and to Denis Simon for the reference [10].