Results 1  10
of
30
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 973 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
A Monte Carlo Approach to Nonnormal and Nonlinear StateSpace Modeling
, 1992
"... this article then is to develop methodology for modeling the nonnormality of the ut, the vt, or both. A second departure from the model specification ( 1 ) is to allow for unknown variances in the state or observational equation, as well as for unknown parameters in the transition matrices Ft and Ht ..."
Abstract

Cited by 124 (13 self)
 Add to MetaCart
this article then is to develop methodology for modeling the nonnormality of the ut, the vt, or both. A second departure from the model specification ( 1 ) is to allow for unknown variances in the state or observational equation, as well as for unknown parameters in the transition matrices Ft and Ht. As a third generalization we allow for nonlinear model structures; that is, X t = ft(Xtl) q Ut, and Yt = ht(xt) + vt, t = 1, ..., n, (2) whereft( ) and ht(. ) are given, but perhaps also depend on some unknown parameters. The experimenter may wish to entertain a variety of error distributions. Our goal throughout the article is an analysis for general statespace models that does not resort to convenient assumptions at the expense of model adequacy
Markov Chain Monte Carlo Simulation Methods in Econometrics
, 1993
"... We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literat ..."
Abstract

Cited by 90 (5 self)
 Add to MetaCart
We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the presentation and explanation of applications to important models that are studied in econometrics. We include a discussion of some implementation issues, the use of the methods in connection with the EM algorithm, and how the methods can be helpful in model specification questions. Many of the applications of these methods are of particular interest to Bayesians, but we also point out ways in which frequentist statisticians may find the techniques useful.
Bayes factors and model uncertainty
 DEPARTMENT OF STATISTICS, UNIVERSITY OFWASHINGTON
, 1993
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of Pvalues, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor ofa null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "nonstandard " statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive nonBayesian significance
Bayesian model averaging
 STAT.SCI
, 1999
"... Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions tha ..."
Abstract

Cited by 41 (0 self)
 Add to MetaCart
Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions that are more risky than one thinks they are. Bayesian model averaging (BMA) provides a coherent mechanism for accounting for this model uncertainty. Several methods for implementing BMA haverecently emerged. We discuss these methods and present anumber of examples. In these examples, BMA provides improved outofsample predictive performance. We also provide a catalogue of
Hypothesis Testing and Model Selection Via Posterior Simulation
 In Practical Markov Chain
, 1995
"... Introduction To motivate the methods described in this chapter, consider the following inference problem in astronomy (Soubiran, 1993). Until fairly recently, it has been believed that the Galaxy consists of two stellar populations, the disk and the halo. More recently, it has been hypothesized tha ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
Introduction To motivate the methods described in this chapter, consider the following inference problem in astronomy (Soubiran, 1993). Until fairly recently, it has been believed that the Galaxy consists of two stellar populations, the disk and the halo. More recently, it has been hypothesized that there are in fact three stellar populations, the old (or thin) disk, the thick disk, and the halo, distinguished by their spatial distributions, their velocities, and their metallicities. These hypotheses have different implications for theories of the formation of the Galaxy. Some of the evidence for deciding whether there are two or three populations is shown in Figure 1, which shows radial and rotational velocities for n = 2; 370 stars. A natural model for this situation is a mixture model with J components, namely y i = J X j=1 ae j
MCMC methods for continuoustime financial econometrics

, 2003
"... This chapter develops Markov Chain Monte Carlo (MCMC) methods for Bayesian inference in continuoustime asset pricing models. The Bayesian solution to the inference problem is the distribution of parameters and latent variables conditional on observed data, and MCMC methods provide a tool for explor ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
This chapter develops Markov Chain Monte Carlo (MCMC) methods for Bayesian inference in continuoustime asset pricing models. The Bayesian solution to the inference problem is the distribution of parameters and latent variables conditional on observed data, and MCMC methods provide a tool for exploring these highdimensional, complex distributions. We first provide a description of the foundations and mechanics of MCMC algorithms. This includes a discussion of the CliffordHammersley theorem, the Gibbs sampler, the MetropolisHastings algorithm, and theoretical convergence properties of MCMC algorithms. We next provide a tutorial on building MCMC algorithms for a range of continuoustime asset pricing models. We include detailed examples for equity price models, option pricing models, term structure models, and regimeswitching models. Finally, we discuss the issue of sequential Bayesian inference, both for parameters and state variables.
The Horseshoe Estimator for Sparse Signals
, 2008
"... This paper proposes a new approach to sparsity called the horseshoe estimator. The horseshoe is a close cousin of other widely used Bayes rules arising from, for example, doubleexponential and Cauchy priors, in that it is a member of the same family of multivariate scale mixtures of normals. But th ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
This paper proposes a new approach to sparsity called the horseshoe estimator. The horseshoe is a close cousin of other widely used Bayes rules arising from, for example, doubleexponential and Cauchy priors, in that it is a member of the same family of multivariate scale mixtures of normals. But the horseshoe enjoys a number of advantages over existing approaches, including its robustness, its adaptivity to different sparsity patterns, and its analytical tractability. We prove two theorems that formally characterize both the horseshoeâ€™s adeptness at large outlying signals, and its superefficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using a combination of real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers one would get by pursuing a full Bayesian modelaveraging approach using a discrete mixture prior to model signals and noise.
MCMC Methods for Financial Econometrics
 Handbook of Financial Econometrics
, 2002
"... This chapter discusses Markov Chain Monte Carlo (MCMC) based methods for es timating continuoustime asset pricing models. We describe the Bayesian approach to empirical asset pricing, the mechanics of MCMC algorithms and the strong theoretical underpinnings of MCMC algorithms. We provide a tuto ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
This chapter discusses Markov Chain Monte Carlo (MCMC) based methods for es timating continuoustime asset pricing models. We describe the Bayesian approach to empirical asset pricing, the mechanics of MCMC algorithms and the strong theoretical underpinnings of MCMC algorithms. We provide a tutorial on building MCMC algo rithms and show how to estimate equity price models with factors such as stochastic expected returns, stochastic volatility and jumps, multifactor term structure models with stochastic volatility, timevarying central tenclancy or jumps and regime switching models.
Nonlinear and NonGaussian StateSpace Modeling with Monte Carlo Techniques: A Survey and Comparative Study
 In Rao, C., & Shanbhag, D. (Eds.), Handbook of Statistics
, 2000
"... Since Kitagawa (1987) and Kramer and Sorenson (1988) proposed the filter and smoother using numerical integration, nonlinear and/or nonGaussian state estimation problems have been developed. Numerical integration becomes extremely computerintensive in the higher dimensional cases of the state vect ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
Since Kitagawa (1987) and Kramer and Sorenson (1988) proposed the filter and smoother using numerical integration, nonlinear and/or nonGaussian state estimation problems have been developed. Numerical integration becomes extremely computerintensive in the higher dimensional cases of the state vector. Therefore, to improve the above problem, the sampling techniques such as Monte Carlo integration with importance sampling, resampling, rejection sampling, Markov chain Monte Carlo and so on are utilized, which can be easily applied to multidimensional cases. Thus, in the last decade, several kinds of nonlinear and nonGaussian filters and smoothers have been proposed using various computational techniques. The objective of this paper is to introduce the nonlinear and nonGaussian filters and smoothers which can be applied to any nonlinear and/or nonGaussian cases. Moreover, by Monte Carlo studies, each procedure is compared by the root mean square error criterion.