Results 1 
3 of
3
Flexible encoding of mathematics on the computer
 In MKM 2004, volume 3119 of LNCS
, 2004
"... Abstract. This paper reports on refinements and extensions to the MathLang framework that add substantial support for natural language text. We show how the extended framework supports multiple views of mathematical texts, including natural language views using the exact text that the mathematician ..."
Abstract

Cited by 22 (12 self)
 Add to MetaCart
Abstract. This paper reports on refinements and extensions to the MathLang framework that add substantial support for natural language text. We show how the extended framework supports multiple views of mathematical texts, including natural language views using the exact text that the mathematician wants to use. Thus, MathLang now supports the ability to capture the essential mathematical structure of mathematics written using natural language text. We show examples of how arbitrary mathematical text can be encoded in MathLang without needing to change any of the words or symbols of the texts or their order. In particular, we show the encoding of a theorem and its proof that has been used by Wiedijk for comparing many theorem prover representations of mathematics, namely the irrationality of √ 2 (originally due to Pythagoras). We encode a 1960 version by Hardy and Wright, and a more recent version by Barendregt. 1 On the way to a mathematical vernacular for computers Mathematicians now use computer software for a variety of tasks: typing mathematical texts, performing calculation, analyzing theories, verifying proofs. Software tools like
Assertionlevel proof representation with underspecification
, 2003
"... We propose a proof representation format for humanoriented proofs at the assertion level with underspecification. This work aims at providing a possible solution to challenging phenomena worked out in empirical studies in the DIALOG project at Saarland University. A particular challenge in this pro ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
We propose a proof representation format for humanoriented proofs at the assertion level with underspecification. This work aims at providing a possible solution to challenging phenomena worked out in empirical studies in the DIALOG project at Saarland University. A particular challenge in this project is to bridge the gap between the humanoriented proof representation format with underspecification used in the proof manager of the tutorial dialogue system and the calculus and machineoriented representation format of the domain reasoner.
Abstract Computerizing Mathematical Text with
"... Mathematical texts can be computerized in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which c ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Mathematical texts can be computerized in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which capture the full mathematical meaning and have proofs expressed in a formal foundation of mathematics. In between, there are computer typesetting systems (e.g., LATEX and Presentation MathML) and semantically oriented systems (e.g., Content MathML, OpenMath, OMDoc, etc.). The MathLang project was initiated in 2000 by Fairouz Kamareddine and Joe Wells with the aim of developing an approach for computerizing mathematical texts and knowledge which is flexible enough to connect the different approaches to computerization, which allows various degrees of formalization, and which is compatible with different logical frameworks (e.g., set theory, category theory, type theory, etc.) and proof systems. The approach is embodied in a computer representation, which we call MathLang, and associated software tools, which are being developed by ongoing work. Three Ph.D. students (Manuel Maarek (2002/2007), Krzysztof Retel (since 2004), and Robert Lamar (since 2006)) and over a dozen master’s degree and undergraduate students have worked on MathLang. The project’s progress and design choices are driven by the needs for computerizing real representative mathematical texts chosen from various