Results 1 
3 of
3
Model Theory and Modules
, 2006
"... The modeltheoretic investigation of modules has led to ideas, techniques and results which are of algebraic interest, irrespective of their modeltheoretic significance. It is these aspects that I will discuss in this article, although I will make some comments on the model theory of modules per se ..."
Abstract

Cited by 64 (20 self)
 Add to MetaCart
The modeltheoretic investigation of modules has led to ideas, techniques and results which are of algebraic interest, irrespective of their modeltheoretic significance. It is these aspects that I will discuss in this article, although I will make some comments on the model theory of modules per se. Our default is that the term “module ” will mean (unital) right module over a ring (associative with 1) R. The category of such modules is denoted ModR, the full subcategory of finitely presented modules will be denoted modR, the
BLOCKS AND MODULES FOR WHITTAKER PAIRS
"... Abstract. Inspired by recent activities on Whittaker modules over various (Lie) algebras we describe some general framework for the study of Lie algebra modules locally finite over a subalgebra. As a special case we obtain a very general setup for the study of Whittaker modules, which includes, in p ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. Inspired by recent activities on Whittaker modules over various (Lie) algebras we describe some general framework for the study of Lie algebra modules locally finite over a subalgebra. As a special case we obtain a very general setup for the study of Whittaker modules, which includes, in particular, Lie algebras with triangular decomposition and simple Lie algebras of Cartan type. We describe some basic properties of Whittaker modules, including a block decomposition of the category of Whittaker modules and certain properties of simple Whittaker modules under some rather mild assumptions. We establish a connection between our general setup and the general setup of HarishChandra subalgebras in the sense of Drozd, Futorny and Ovsienko. For Lie algebras with triangular decomposition we construct a family of simple Whittaker modules (roughly depending on the choice of a pair of weights in the dual of the Cartan subalgebra), describe their annihilators and formulate several classification conjectures. In particular, we construct some new simple Whittaker modules for the Virasoro algebra. Finally, we construct a series of simple Whittaker modules for the Lie algebra of derivations of the polynomial algebra, and consider several finite dimensional examples, where we study the
EXTENSIONS OF SIMPLE MODULES AND THE CONVERSE OF SCHUR’S LEMMA
, 903
"... Abstract. The converse of Schur’s lemma (or CSL) condition on a module category has been the subject of considerable study in recent years. In this note we extend that work by developing basic properties of module categories in which the CSL condition governs modules of finite length. 1. ..."
Abstract
 Add to MetaCart
Abstract. The converse of Schur’s lemma (or CSL) condition on a module category has been the subject of considerable study in recent years. In this note we extend that work by developing basic properties of module categories in which the CSL condition governs modules of finite length. 1.