Results 1  10
of
14
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
Hilbert’s “Verunglückter Beweis,” the first epsilon theorem and consistency proofs. History and Philosophy of Logic
"... Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One propo ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One proposed method of giving such proofs is Hilbert’s epsilonsubstitution method. There was, however, a second approach which was not refelected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert’s first epsilon theorem and a certain “general consistency result. ” An analysis of this socalled “failed proof ” lends further support to an interpretation of Hilbert according to which he was expressly concerned with conservatitvity proofs, even though his publications only mention consistency as the main question. §1. Introduction. The aim of Hilbert’s program for consistency proofs in the 1920s is well known: to formalize mathematics, and to give finitistic consistency proofs of these systems and thus to put mathematics on a “secure foundation.” What is perhaps less well known is exactly how Hilbert thought this should be carried out. Over ten years before Gentzen developed sequent calculus formalizations
Spacetime Geometry Translated into the Hegelian and Intuitionist Systems
"... Abstract: Kant noted the importance of spatial and temporal intuitions (synthetics) in geometric reasoning, but intuitions lend themselves to different interpretations and a more solid grounding may be sought in formality. In mathematics David Hilbert defended formality, while L. E. J. Brouwer cited ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract: Kant noted the importance of spatial and temporal intuitions (synthetics) in geometric reasoning, but intuitions lend themselves to different interpretations and a more solid grounding may be sought in formality. In mathematics David Hilbert defended formality, while L. E. J. Brouwer cited intuitions that remain unencompassed by formality. In this paper, the conflict between formality and intuition is again investigated, and it is found to impact on our interpretations of spacetime as translated into the language of geometry. It is argued that that language as a formal system works because of an auxiliary innateness that carries sentience, or feeling. Therefore, the formality is necessarily incomplete as sentience is beyond its reach. Specifically, it is argued that sentience is covertly connected to spacetime geometry when axioms of congruency are stipulated, essentially hiding in the formality what is sensecertain. Accordingly, geometry is constructed from primitive intuitions represented by onepointedness and routeinvariance. Geometry is recognized as a twosided language that permitted a Hegelian passage from Euclidean geometry to Riemannian geometry. The concepts of general relativity, quantum mechanics and entropyirreversibility are found to be the consequences of linguistic type reasoning, and perceived conflicts (e.g., the puzzle of quantum gravity) are conflicts only within formal linguistic systems. Therefore, the conflicts do not survive beyond the synthetics because what is felt relates to inexplicable feeling, and because the question of synthesis returns only to Hegel’s absolute Notion.
Hermann Weyl: MathematicianPhilosopher MATHEMATICS AND PHILOSOPHY ARE CLOSELY LINKED, and several great
"... mathematicians who were at the same time great philosophers come to mind— Pythagoras, Descartes and Leibniz, for instance. One great mathematician of the modern era in whose thinking philosophy played a major role was Hermann Weyl (1885–1955), whose work encompassed analysis, number theory, topology ..."
Abstract
 Add to MetaCart
mathematicians who were at the same time great philosophers come to mind— Pythagoras, Descartes and Leibniz, for instance. One great mathematician of the modern era in whose thinking philosophy played a major role was Hermann Weyl (1885–1955), whose work encompassed analysis, number theory, topology, differential geometry, relativity theory, quantum mechanics, and mathematical logic. His many writings are informed by a vast erudition, an acute philosophical awareness, and even, on occasion, a certain playfulness. No matter what the subject may be—mathematics, physics, philosophy—Weyl’s writing fascinates both by the depth of insight it reveals and by its startling departures from academic convention. Who else would have the daring to liken (as he does in the discussion of Space and Time in his Philosophy of Mathematics and Natural Science), a coordinate system to “the residue of the annihilation of the ego ” 1? Or then (somewhat further on in the same discussion) to express the belief in the impossibility of a completely objective account of individual consciousness by the assertion “...it is shattered by Judas ’ desperate outcry, ‘Why did I have to be Judas?’ ” 2.
Conceptions of the Continuum
"... Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question ..."
Abstract
 Add to MetaCart
Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question the idea from current set theory that the continuum is somehow a uniquely determined concept. Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions. 1. What is the continuum? On the face of it, there are several distinct forms of the continuum as a mathematical concept: in geometry, as a straight line, in analysis as the real number system (characterized in one of several ways), and in set theory as the power set of the natural numbers and, alternatively, as the set of all infinite sequences of zeros and ones. Since it is common to refer to the continuum, in what sense are these all instances of the same concept? When one speaks of the continuum in current settheoretical
The Pragmatism of Hilbert’s Programme ∗
"... of the GaussWeber monument in memory of the great mathematical and physical tradition of the University of Göttingen. On the occasion of this ..."
Abstract
 Add to MetaCart
of the GaussWeber monument in memory of the great mathematical and physical tradition of the University of Göttingen. On the occasion of this
Gödel on Intuition and on Hilbert’s finitism
"... There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the con ..."
Abstract
 Add to MetaCart
There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the contrary, Gödel’s writings represent a smooth evolution, with just one rather small doublereversal, of his view of finitism. He used the term “finit ” (in German) or “finitary ” or “finitistic ” primarily to refer to Hilbert’s conception of finitary mathematics. On two occasions (only, as far as I know), the lecture notes for his lecture at Zilsel’s [Gödel, 1938a] and the lecture notes for a lecture at Yale [Gödel, *1941], he used it in a way that he knew—in the second case, explicitly—went beyond what Hilbert meant. Early in his career, he believed that finitism (in Hilbert’s sense) is openended, in the sense that no correct formal system can be known to formalize all finitist proofs and, in particular, all possible finitist proofs of consistency of firstorder number theory, P A; but starting in the Dialectica paper
In Defense of the Ideal 2nd DRAFT
"... This paper lies at the edge of the topic of the workshop. We can write down a Π1 1 axiom whose models are precisely the ∈structures 〈Rα, ∈ ∩R2 α〉 where α> 0 and Rα is the collection of all (pure) sets of rank < α. From this, one can consider the introduction of new axioms concerning the size of α. ..."
Abstract
 Add to MetaCart
This paper lies at the edge of the topic of the workshop. We can write down a Π1 1 axiom whose models are precisely the ∈structures 〈Rα, ∈ ∩R2 α〉 where α> 0 and Rα is the collection of all (pure) sets of rank < α. From this, one can consider the introduction of new axioms concerning the size of α. The question of the grounds for doing so is perhaps the central question of the workshop. But I want to discuss another question which, as I said, arises at the periphery: How do we know that there are structures 〈Rα, ∈ ∩R2 α〉? How do we know that there exist such things as sets and how do we know that, given such things, the axioms we write down are true of them? These seem very primitive questions, but the skepticism implicit in them has deep (and ancient) roots. In particular, they are questions about ideal objects in general, and not just about the actual infinite. I want to explain why I think the questions (as intended) are empty and the skepticism unfounded. 1 I will be expanding the argument of the first part of my paper “Proof and truth: the Platonism of mathematics”[1986a]. 2 The argument in question