Results 1 
3 of
3
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
Hilbert’s “Verunglückter Beweis,” the first epsilon theorem and consistency proofs. History and Philosophy of Logic
"... Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One propo ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One proposed method of giving such proofs is Hilbert’s epsilonsubstitution method. There was, however, a second approach which was not refelected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert’s first epsilon theorem and a certain “general consistency result. ” An analysis of this socalled “failed proof ” lends further support to an interpretation of Hilbert according to which he was expressly concerned with conservatitvity proofs, even though his publications only mention consistency as the main question. §1. Introduction. The aim of Hilbert’s program for consistency proofs in the 1920s is well known: to formalize mathematics, and to give finitistic consistency proofs of these systems and thus to put mathematics on a “secure foundation.” What is perhaps less well known is exactly how Hilbert thought this should be carried out. Over ten years before Gentzen developed sequent calculus formalizations