Results 1  10
of
22
Hilbert’s twentyfourth problem
 American Mathematical Monthly
, 2001
"... 1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Cong ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Congress of Mathematicians (ICM) in Paris has tremendous importance for all mathematicians. Moreover, a substantial part of
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
Update procedures and the 1consistency of arithmetic
 Mathematical Logic Quarterly
, 2002
"... The 1consistency of arithmetic is shown to be equivalent to the existence of fixed points of a certain type of update procedure, which is implicit in the epsilonsubstitution method. 1 ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
The 1consistency of arithmetic is shown to be equivalent to the existence of fixed points of a certain type of update procedure, which is implicit in the epsilonsubstitution method. 1
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
Hilbert’s “Verunglückter Beweis,” the first epsilon theorem and consistency proofs. History and Philosophy of Logic
"... Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One propo ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One proposed method of giving such proofs is Hilbert’s epsilonsubstitution method. There was, however, a second approach which was not refelected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert’s first epsilon theorem and a certain “general consistency result. ” An analysis of this socalled “failed proof ” lends further support to an interpretation of Hilbert according to which he was expressly concerned with conservatitvity proofs, even though his publications only mention consistency as the main question. §1. Introduction. The aim of Hilbert’s program for consistency proofs in the 1920s is well known: to formalize mathematics, and to give finitistic consistency proofs of these systems and thus to put mathematics on a “secure foundation.” What is perhaps less well known is exactly how Hilbert thought this should be carried out. Over ten years before Gentzen developed sequent calculus formalizations
Gödels reformulation of Gentzen’s first consistency proof for arithmetic: the nocounterexample interpretation
 The. Bulletin of Symbolic Logic
, 2005
"... Abstract. The last section of “Lecture at Zilsel’s ” [9, §4] contains an interesting but quite condensed discussion of Gentzen’s first version of his consistency proof for P A [8], reformulating it as what has come to be called the nocounterexample interpretation. I will describe Gentzen’s result ( ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. The last section of “Lecture at Zilsel’s ” [9, §4] contains an interesting but quite condensed discussion of Gentzen’s first version of his consistency proof for P A [8], reformulating it as what has come to be called the nocounterexample interpretation. I will describe Gentzen’s result (in gametheoretic terms), fill in the details (with some corrections) of Gödel’s reformulation, and discuss the relation between the two proofs. 1. Let me begin with a description of Gentzen’s consistency proof. As had already been noted in [5], we may express it in terms of a game. 1 To simplify things, we can assume that the logical constants of the classical system of number theory, P A, are ∧, ∨, ∀ and ∃ and that negations are applied only to atomic formulas. ¬φ in general is represented by the complement φ of φ, obtained by interchanging ∧ with ∨, ∀ with ∃, and atomic sentences with their negations. The components of the sentences φ ∨ ψ and φ ∧ ψ are φ and ψ. The components of the sentences ∃xφ(x) and ∀xφ(x) are the sentences φ(¯n) for each numeral ¯n. A ∧ or ∀sentence, called a �sentence, is thus expressed by the conjunction of its components and a ∨ or ∃sentence, called a �sentence, is expressed by the disjunction of them; and so it follows that every sentence can be represented as an infinitary propositional formula built up from prime sentences— atomic or negated atomic sentences. Disjunctive and conjunctive sentences with the components φn (where the range of n is 1, 2 or ω) will be denoted respectively by
The epsilon calculus and Herbrand Complexity
 STUDIA LOGICA
, 2006
"... Hilbert’s εcalculus is based on an extension of the language of predicate logic by a termforming operator εx. Two fundamental results about the εcalculus, the first and second epsilon theorem, play a rôle similar to that which the cutelimination theorem plays in sequent calculus. In particular ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Hilbert’s εcalculus is based on an extension of the language of predicate logic by a termforming operator εx. Two fundamental results about the εcalculus, the first and second epsilon theorem, play a rôle similar to that which the cutelimination theorem plays in sequent calculus. In particular, Herbrand’s Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential theorems obtained by this elimination procedure.
Epsilon substitution for transfinite induction
 Arch. Math. Logic
, 2005
"... We apply Mints ’ technique for proving the termination of the epsilon substitution method via cutelimination to the system of Peano Arithmetic with Transfinite Induction given by Arai. 1 ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We apply Mints ’ technique for proving the termination of the epsilon substitution method via cutelimination to the system of Peano Arithmetic with Transfinite Induction given by Arai. 1