Results 1 
6 of
6
Lowness Properties and Randomness
 ADVANCES IN MATHEMATICS
"... The set A is low for MartinLof random if each random set is already random relative to A. A is Ktrivial if the prefix complexity K of each initial segment of A is minimal, namely K(n)+O(1). We show that these classes coincide. This implies answers to questions of AmbosSpies and Kucera [2 ..."
Abstract

Cited by 79 (21 self)
 Add to MetaCart
The set A is low for MartinLof random if each random set is already random relative to A. A is Ktrivial if the prefix complexity K of each initial segment of A is minimal, namely K(n)+O(1). We show that these classes coincide. This implies answers to questions of AmbosSpies and Kucera [2], showing that each low for MartinLof random set is # 2 . Our class induces a natural intermediate # 3 ideal in the r.e. Turing degrees (which generates the whole class under downward closure). Answering
Almost everywhere domination and superhighness
 Mathematical Logic Quarterly
"... Let ω denote the set of natural numbers. For functions f, g: ω → ω, we say that f is dominated by g if f(n) < g(n) for all but finitely many n ∈ ω. We consider the standard “fair coin ” probability measure on the space 2 ω of infinite sequences of 0’s and 1’s. A Turing oracle B is said to be almost ..."
Abstract

Cited by 17 (9 self)
 Add to MetaCart
Let ω denote the set of natural numbers. For functions f, g: ω → ω, we say that f is dominated by g if f(n) < g(n) for all but finitely many n ∈ ω. We consider the standard “fair coin ” probability measure on the space 2 ω of infinite sequences of 0’s and 1’s. A Turing oracle B is said to be almost everywhere dominating if, for measure one many X ∈ 2 ω, each function which is Turing computable from X is dominated by some function which is Turing computable from B. Dobrinen and Simpson have shown that the almost everywhere domination property and some of its variant properties are closely related to the reverse mathematics of measure theory. In this paper we exposit some recent results of KjosHanssen, KjosHanssen/Miller/Solomon, and others concerning LRreducibility and almost everywhere domination. We also prove the following new result: If B is almost everywhere dominating, then B is superhigh, i.e., 0 ′′ is
TURING DEGREES OF REALS OF POSITIVE EFFECTIVE PACKING DIMENSION
"... Abstract. A relatively longstanding question in algorithmic randomness is Jan Reimann’s question whether there is a Turing cone of broken dimension. That is, is there a real A such that {B: B ≤T A} contains no 1random real, yet contains elements of nonzero effective Hausdorff Dimension? We show tha ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. A relatively longstanding question in algorithmic randomness is Jan Reimann’s question whether there is a Turing cone of broken dimension. That is, is there a real A such that {B: B ≤T A} contains no 1random real, yet contains elements of nonzero effective Hausdorff Dimension? We show that the answer is affirmative if Hausdorff dimension is replaced by its inner analogue packing dimension. We construct a minimal degree of effective packing dimension 1. This leads us to examine the Turing degrees of reals with positive effective packing dimension. Unlike effective Hausdorff dimension, this is a notion of complexity which is shared by both random and sufficiently generic reals. We provide a characterization of the c.e. array noncomputable degrees in terms of effective packing dimension. 1.
Algorithmically Independent Sequences
, 2008
"... Two objects are independent if they do not affect each other. Independence is wellunderstood in classical information theory, but less in algorithmic information theory. Working in the framework of algorithmic information theory, the paper proposes two types of independence for arbitrary infinite bi ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Two objects are independent if they do not affect each other. Independence is wellunderstood in classical information theory, but less in algorithmic information theory. Working in the framework of algorithmic information theory, the paper proposes two types of independence for arbitrary infinite binary sequences and studies their properties. Our two proposed notions of independence have some of the intuitive properties that one naturally expects. For example, for every sequence x, the set of sequences that are independent (in the weaker of the two senses) with x has measure one. For both notions of independence we investigate to what extent pairs of independent sequences, can be effectively constructed via Turing reductions (from one or more input sequences). In this respect, we prove several impossibility results. For example, it is shown that there is no effective way of producing from an arbitrary sequence with positive constructive Hausdorff dimension two sequences that are independent (even in the weaker type of independence) and have superlogarithmic complexity. Finally, a few conjectures and open questions are discussed.
EFFECTIVE PACKING DIMENSION AND TRACEABILITY
"... The concern of this paper is with effective packing dimension. This concept can be traced back to the work of Borel and Lebesgue who studied measure as a way of specifying the size of sets. Carathéodory later generalized Lebesgue measure to the ndimensional Euclidean space, and this was taken furth ..."
Abstract
 Add to MetaCart
The concern of this paper is with effective packing dimension. This concept can be traced back to the work of Borel and Lebesgue who studied measure as a way of specifying the size of sets. Carathéodory later generalized Lebesgue measure to the ndimensional Euclidean space, and this was taken further by Hausdorff [Hau19]