Results 1 
9 of
9
Extension theorems, orbits, and automorphisms of the computably enumerable sets
 TRANS. AMER. MATH. SOC.
, 2008
"... We prove an algebraic extension theorem for the computably enumerable sets, E. Using this extension theorem and other work we then show if A and � A are automorphic via Ψ, then they are automorphic via Λ where Λ ↾ L ∗ (A) =ΨandΛ↾E ∗ (A) is∆0 3. We give an algebraic description of when an arbitrary ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We prove an algebraic extension theorem for the computably enumerable sets, E. Using this extension theorem and other work we then show if A and � A are automorphic via Ψ, then they are automorphic via Λ where Λ ↾ L ∗ (A) =ΨandΛ↾E ∗ (A) is∆0 3. We give an algebraic description of when an arbitrary set �A is in the orbit of a computably enumerable set A. We construct the first example of a definable orbit which is not a ∆0 3 orbit. We conclude with some results which restrict the ways one can increase the complexity of orbits. For example, we show that if A is simple and �A is in the same orbit as A, then they are in the same ∆0 6orbit and, furthermore, we provide a classification of when two simple sets are in the same orbit.
Isomorphisms Of Splits Of Computably Enumerable Sets
 J. OF SYMBOLIC LOGIC
, 2002
"... We show that if A and A are automorphic via # then the structures SR (A) and SR ( 3 isomorphic via an isomorphism # induced by #. Then we use this result to classify completely the orbits of hhsimple sets. ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We show that if A and A are automorphic via # then the structures SR (A) and SR ( 3 isomorphic via an isomorphism # induced by #. Then we use this result to classify completely the orbits of hhsimple sets.
On the Orbits of Computable Enumerable Sets
, 2007
"... The goal of this paper is to show there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; th ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
The goal of this paper is to show there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
The complexity of orbits of computably enumerable sets
 BULLETIN OF SYMBOLIC LOGIC
, 2008
"... The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
An Overview of the Computably Enumerable Sets
"... The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do not study the partial ordering of the c.e. degrees under Turing reducibility, although a number of the results here relate the algebraic structure of a c.e. set A to its (Turing) degree in the sense of the information content of A. We consider here various properties of E: (1) deønable properties; (2) automorphisms; (3) invariant properties; (4) decidability and undecidability results; miscellaneous results. This is not intended to be a comprehensive survey of all results in the subject since 1987, but we give a number of references in the bibliography to other results.
Definable properties of the computably enumerable sets
 Proceedings of the Oberwolfach Conference on Computability Theory
, 1996
"... Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the ..."
Abstract
 Add to MetaCart
Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the inclusion ordering of c.e. subsets of!, namely E = (fWngn2! ; ae). In the 1950's and 1960's Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating Edefinable properties of A, like maximal, hhsimple, atomless, to the information content (usually the
Extensions, Automorphisms, and Definability
 CONTEMPORARY MATHEMATICS
"... This paper contains some results and open questions for automorphisms and definable properties of computably enumerable (c.e.) sets. It has long been apparent in automorphisms of c.e. sets, and is now becoming apparent in applications to topology and dierential geometry, that it is important to ..."
Abstract
 Add to MetaCart
This paper contains some results and open questions for automorphisms and definable properties of computably enumerable (c.e.) sets. It has long been apparent in automorphisms of c.e. sets, and is now becoming apparent in applications to topology and dierential geometry, that it is important to know the dynamical properties of a c.e. set We , not merely whether an element x is enumerated in We but when, relative to its appearance in other c.e. sets. We present here