Results 1 
5 of
5
Extension theorems, orbits, and automorphisms of the computably enumerable sets
 TRANS. AMER. MATH. SOC.
, 2008
"... We prove an algebraic extension theorem for the computably enumerable sets, E. Using this extension theorem and other work we then show if A and � A are automorphic via Ψ, then they are automorphic via Λ where Λ ↾ L ∗ (A) =ΨandΛ↾E ∗ (A) is∆0 3. We give an algebraic description of when an arbitrary ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We prove an algebraic extension theorem for the computably enumerable sets, E. Using this extension theorem and other work we then show if A and � A are automorphic via Ψ, then they are automorphic via Λ where Λ ↾ L ∗ (A) =ΨandΛ↾E ∗ (A) is∆0 3. We give an algebraic description of when an arbitrary set �A is in the orbit of a computably enumerable set A. We construct the first example of a definable orbit which is not a ∆0 3 orbit. We conclude with some results which restrict the ways one can increase the complexity of orbits. For example, we show that if A is simple and �A is in the same orbit as A, then they are in the same ∆0 6orbit and, furthermore, we provide a classification of when two simple sets are in the same orbit.
Isomorphisms Of Splits Of Computably Enumerable Sets
 J. OF SYMBOLIC LOGIC
, 2002
"... We show that if A and A are automorphic via # then the structures SR (A) and SR ( 3 isomorphic via an isomorphism # induced by #. Then we use this result to classify completely the orbits of hhsimple sets. ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We show that if A and A are automorphic via # then the structures SR (A) and SR ( 3 isomorphic via an isomorphism # induced by #. Then we use this result to classify completely the orbits of hhsimple sets.
The complexity of orbits of computably enumerable sets
 BULLETIN OF SYMBOLIC LOGIC
, 2008
"... The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
Extending and Interpreting Post’s Programme
, 2008
"... Computability theory concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic in ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Computability theory concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic infrastructure. Having characterised the close connection between the quantifier type of a real and the Turing jump operation, he looked for more subtle ways in which information entails a particular causal context. Specifically, he wanted to find simple relations on reals which produced richness of local computabilitytheoretic structure. To this extent, he was not just interested in causal structure as an abstraction, but in the way in which this structure emerges in natural contexts. Posts programme was the genesis of a more far reaching research project. In this article we will firstly review the history of Posts programme, and look at two interesting developments of Posts approach. The first of these developments concerns the extension of the core programme, initially restricted to the Turing structure of the computably enumerable sets of natural numbers, to the Ershov hierarchy of sets. The second looks at how new types of information coming from the recent growth of research into randomness, and the revealing of unexpected new computabilitytheoretic infrastructure. We will conclude by viewing Posts programme from a more general perspective. We will look at how algorithmic structure does not just emerge mathematically from information, but how that emergent structure can model the emergence of very basic aspects of the real world.
THE COMPUTABLY ENUMERABLE SETS: RECENT RESULTS AND FUTURE DIRECTIONS
"... Abstract. We survey some of the recent results on the structure of the computably enumerable (c.e.) sets under inclusion. Our main interest is on collections of c.e. sets which are closed under automorphic images, such as the orbit of a c.e. set, and their (Turing) degree theoretic and dynamic prope ..."
Abstract
 Add to MetaCart
Abstract. We survey some of the recent results on the structure of the computably enumerable (c.e.) sets under inclusion. Our main interest is on collections of c.e. sets which are closed under automorphic images, such as the orbit of a c.e. set, and their (Turing) degree theoretic and dynamic properties. We take an algebraic viewpoint rather than the traditional dynamic viewpoint. 1.