Results 1 
5 of
5
Extension theorems, orbits, and automorphisms of the computably enumerable sets
 TRANS. AMER. MATH. SOC.
, 2008
"... We prove an algebraic extension theorem for the computably enumerable sets, E. Using this extension theorem and other work we then show if A and � A are automorphic via Ψ, then they are automorphic via Λ where Λ ↾ L ∗ (A) =ΨandΛ↾E ∗ (A) is∆0 3. We give an algebraic description of when an arbitrary ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We prove an algebraic extension theorem for the computably enumerable sets, E. Using this extension theorem and other work we then show if A and � A are automorphic via Ψ, then they are automorphic via Λ where Λ ↾ L ∗ (A) =ΨandΛ↾E ∗ (A) is∆0 3. We give an algebraic description of when an arbitrary set �A is in the orbit of a computably enumerable set A. We construct the first example of a definable orbit which is not a ∆0 3 orbit. We conclude with some results which restrict the ways one can increase the complexity of orbits. For example, we show that if A is simple and �A is in the same orbit as A, then they are in the same ∆0 6orbit and, furthermore, we provide a classification of when two simple sets are in the same orbit.
On the Orbits of Computable Enumerable Sets
, 2007
"... The goal of this paper is to show there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; th ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
The goal of this paper is to show there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
The complexity of orbits of computably enumerable sets
 BULLETIN OF SYMBOLIC LOGIC
, 2008
"... The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
COMPUTABILITY, TRACEABILITY AND BEYOND
"... This thesis is concerned with the interaction between computability and randomness. In the first part, we study the notion of traceability. This combinatorial notion has an increasing influence in the study of algorithmic randomness. We prove a separation result about the bounds on jump traceability ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This thesis is concerned with the interaction between computability and randomness. In the first part, we study the notion of traceability. This combinatorial notion has an increasing influence in the study of algorithmic randomness. We prove a separation result about the bounds on jump traceability, and show that the index set of the strongly jump traceable computably enumerable (c.e.) sets is Π0 4complete. This shows that the problem of deciding if a c.e. set is strongly jump traceable, is as hard as it can be. We define a strengthening of strong jump traceability, called hyper jump traceability, and prove some interesting results about this new class. Despite the fact that the hyper jump traceable sets have their origins in algorithmic randomness, we are able to show that they are natural examples of several Turing degree theoretic properties. For instance, we show that the hyper jump traceable sets are the first example of a lowness class with no promptly simple members. We also study the dual highness notions obtained from strong jump traceability, and explore their degree theoretic properties.
Extensions, Automorphisms, and Definability
 CONTEMPORARY MATHEMATICS
"... This paper contains some results and open questions for automorphisms and definable properties of computably enumerable (c.e.) sets. It has long been apparent in automorphisms of c.e. sets, and is now becoming apparent in applications to topology and dierential geometry, that it is important to ..."
Abstract
 Add to MetaCart
This paper contains some results and open questions for automorphisms and definable properties of computably enumerable (c.e.) sets. It has long been apparent in automorphisms of c.e. sets, and is now becoming apparent in applications to topology and dierential geometry, that it is important to know the dynamical properties of a c.e. set We , not merely whether an element x is enumerated in We but when, relative to its appearance in other c.e. sets. We present here