Results 1 
4 of
4
Borrowing Interpolation
, 2011
"... We present a generic method for establishing interpolation properties by ‘borrowing ’ across logical systems. The framework used is that of the socaled ‘institution theory’ which is a categorical abstract model theory providing a formal definition for the informal concept of ‘logical system’ and a ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
We present a generic method for establishing interpolation properties by ‘borrowing ’ across logical systems. The framework used is that of the socaled ‘institution theory’ which is a categorical abstract model theory providing a formal definition for the informal concept of ‘logical system’ and a mathematical concept of ‘homomorphism’ between logical systems. We develop three different styles or patterns to apply the proposed borrowing interpolation method. These three ways are illustrated by the development of a series of concrete interpolation results for logical systems that are used in mathematical logic or in computing science, most of these interpolation properties apparently being new results. These logical systems include fragments of (classical many sorted) first order logic with equality, preordered algebra and its Horn fragment, partial algebra, higher order logic. Applications are also expected for many other logical systems, including membership algebra, various types of order sorted algebra, the logic of predefined types, etc., and various combinations of the logical systems discussed here.
SERVICEORIENTED LOGIC PROGRAMMING
"... Abstract. We develop formal foundations for notions and mechanisms needed to support serviceoriented computing. Our work builds on recent theoretical advancements in the algebraic structures that capture the way services are orchestrated and in the processes that formalize the discovery and binding ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. We develop formal foundations for notions and mechanisms needed to support serviceoriented computing. Our work builds on recent theoretical advancements in the algebraic structures that capture the way services are orchestrated and in the processes that formalize the discovery and binding of services to given client applications by means of logical representations of required and provided services. We show how the denotational and the operational semantics specific to conventional logic programming can be generalized using the theory of institutions to address both static and dynamic aspects of serviceoriented computing. Our results rely upon a strong analogy between the discovery of a service that can be bound to an application and the search for a clause that can be used for computing an answer to a query; they explore the manner in which requests for external services can be described as service queries, and explain how the computation of their answers can be performed through serviceoriented derivatives of unification and resolution, which characterize the binding of services and the reconfiguration of applications. 1.
Graded consequence: an institution theoretic study
"... We develop a general study of graded consequence (of manyvalued logic) in an institution theoretic (in the sense of Goguen and Burstall) style. This means both syntax and semantics are considered fully abstract, as well as the satisfaction between them. Our approach contrasts to other approaches on ..."
Abstract
 Add to MetaCart
(Show Context)
We develop a general study of graded consequence (of manyvalued logic) in an institution theoretic (in the sense of Goguen and Burstall) style. This means both syntax and semantics are considered fully abstract, as well as the satisfaction between them. Our approach contrasts to other approaches on manyvalued logic in that it is a multisignature one, in the spirit of institution theory. We consider graded consequence at three different conceptual levels: entailment, semantic, and closure operators, and explore several interpretations between them. We also study logical connectors and quantifiers both at the entailment and semantic level, compactness and soundness properties. 1.