Results 1  10
of
14
Cartesian Closed Double Categories, their LambdaNotation, and the PiCalculus
, 1999
"... We introduce the notion of cartesian closed double category to provide mobile calculi for communicating systems with specific semantic models: One dimension is dedicated to compose systems and the other to compose their computations and their observations. Also, inspired by the connection between s ..."
Abstract

Cited by 22 (12 self)
 Add to MetaCart
We introduce the notion of cartesian closed double category to provide mobile calculi for communicating systems with specific semantic models: One dimension is dedicated to compose systems and the other to compose their computations and their observations. Also, inspired by the connection between simply typed calculus and cartesian closed categories, we define a new typed framework, called double notation, which is able to express the abstraction /application and pairing/projection operations in all dimensions. In this development, we take the categorical presentation as a guidance in the interpretation of the formalism. A case study of the ßcalculus, where the double  notation straightforwardly handles name passing and creation, concludes the presentation.
Tile Bisimilarity Congruences for Open Terms and Term Graphs
 in: Proc. CONCUR 2000, LNCS 1877 (2000
, 2000
"... The definition of sos formats ensuring that bisimilarity on closed terms is a congruence has received much attention in the last two decades. For dealing with open system specifications, the congruence is usually lifted from closed terms to open terms by instantiating the free variables in all possi ..."
Abstract

Cited by 13 (7 self)
 Add to MetaCart
The definition of sos formats ensuring that bisimilarity on closed terms is a congruence has received much attention in the last two decades. For dealing with open system specifications, the congruence is usually lifted from closed terms to open terms by instantiating the free variables in all possible ways; the only alternatives considered in the literature relying on Larsen and Xinxin's context systems and Rensink's conditional transition systems. We propose a different approach based on tile logic, where both closed and open terms are managed analogously. In particular, we analyze the `bisimilarity as congruence' property for several tile formats that accomplish di erent concepts of subterm sharing.
An Interactive Semantics of Logic Programming
 THEORY AND PRACTICE OF LOGIC PROGRAMMING
, 2001
"... We apply to logic programming some recently emerging ideas from the field of reductionbased communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
We apply to logic programming some recently emerging ideas from the field of reductionbased communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.
Model Synchronization: Mappings, Tiles, and Categories
 In: GTTSE 2009, LNCS
, 2011
"... Abstract. The paper presents a novel algebraic framework for specification and design of model synchronization tools. The basic premise is that synchronization procedures, and hence algebraic operations modeling them, are diagrammatic: they take a configuration (diagram) of models and mappings as ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
(Show Context)
Abstract. The paper presents a novel algebraic framework for specification and design of model synchronization tools. The basic premise is that synchronization procedures, and hence algebraic operations modeling them, are diagrammatic: they take a configuration (diagram) of models and mappings as their input and produce a diagram as the output. Many important synchronization scenarios are based on diagram operations of square shape. Composition of such operations amounts to their tiling, and complex synchronizers can thus be assembled by tiling together simple synchronization blocks. This gives rise to a visually suggestive yet precise notation for specifying synchronization procedures and reasoning about them. 1
Open Ended Systems, Dynamic Bisimulation and Tile Logic
, 2000
"... The sos formats ensuring that bisimilarity is a congruence often fail in the presence of structural axioms on the algebra of states. Dynamic bisimulation, introduced to characterize the coarsest congruence for ccs which is also a (weak) bisimulation, reconciles the bisimilarity as congruence pro ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
The sos formats ensuring that bisimilarity is a congruence often fail in the presence of structural axioms on the algebra of states. Dynamic bisimulation, introduced to characterize the coarsest congruence for ccs which is also a (weak) bisimulation, reconciles the bisimilarity as congruence property with such axioms and with the specication of open ended systems, where states can be recongured at runtime, at the cost of an innitary operation at the metalevel. We show that the compositional framework oered by tile logic is suitable to deal with structural axioms and open ended systems specications, allowing for a nitary presentation of context closure. Keywords: Bisimulation, sos formats, dynamic bisimulation, tile logic. Introduction The semantics of dynamic systems can be conveniently expressed via labelled transition systems (lts) whose states are terms over a certain algebra and whose labels describe some abstract behavioral information. Provided such informatio...
Model synchronization: mappings, tile algebra, and categories
 In: Postproc. GTTSE
, 2009
"... Abstract. The paper presents a novel algebraic framework for specification and design of model synchronization tools. The basic premise is that synchronization procedures, and hence algebraic operations modeling them, are diagrammatic: they take a configuration (diagram) of models and mappings as th ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
(Show Context)
Abstract. The paper presents a novel algebraic framework for specification and design of model synchronization tools. The basic premise is that synchronization procedures, and hence algebraic operations modeling them, are diagrammatic: they take a configuration (diagram) of models and mappings as their input and produce a diagram as the output. Many important synchronization scenarios are based on diagram operations of square shape. Composition of such operations amounts to their tiling, and complex synchronizers can thus be assembled by tiling together simple synchronization blocks. This gives rise to a visually suggestive yet precise notation for specifying synchronization procedures and reasoning about them. 1
Tile Transition Systems as Structured Coalgebras
 FUNDAMENTALS OF COMPUTATION THEORY, VOLUME 1684 OF LNCS
, 1999
"... The aim of this paper is to investigate the relation between two models of concurrent systems: tile rewrite systems and coalgebras. Tiles are rewrite rules with side effects which are endowed with operations of parallel and sequential composition and synchronization. Their models can be described as ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
(Show Context)
The aim of this paper is to investigate the relation between two models of concurrent systems: tile rewrite systems and coalgebras. Tiles are rewrite rules with side effects which are endowed with operations of parallel and sequential composition and synchronization. Their models can be described as monoidal double categories. Coalgebras can be considered, in a suitable mathematical setting, as dual to algebras. They can be used as models of dynamical systems with hidden states in order to study concepts of observational equivalence and bisimilarity in a more general setting. In order to capture in the coalgebraic presentation the algebraic structure given by the composition operations on tiles, coalgebras have to be endowed with an algebraic structure as well. This leads to the concept of structured coalgebras, i.e., coalgebras for an endofunctor on a category of algebras. However, structured coalgebras are more restrictive than tile models. Those models which can be presented as st...
Connector Algebras, Petri Nets, and BIP ⋆
"... Abstract. In the area of componentbased software architectures, the term connector has been coined to denote an entity (e.g. the communication network, middleware or infrastructure) that regulate the interaction of independent components. Hence, a rigorous mathematical foundation for connectors is ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
Abstract. In the area of componentbased software architectures, the term connector has been coined to denote an entity (e.g. the communication network, middleware or infrastructure) that regulate the interaction of independent components. Hence, a rigorous mathematical foundation for connectors is crucial for the study of coordinated systems. In recent years, many different mathematical frameworks have been proposed to specify, design, analyse, compare, prototype and implement connectors rigorously. In this paper, we overview the main features of three notable frameworks and discuss their similarities, differences, mutual embedding and possible enhancements. First, we show that Sobocinski’s nets with boundaries are as expressive as Sifakis et al.’s BI(P), the BIP component framework without priorities. Second, we provide a basic algebra of connectors for BI(P) by exploiting Montanari et al.’s tile model and a recent correspondence result with nets with boundaries. Finally, we exploit the tile model as a unifying framework to compare BI(P) with other models of connectors and to propose suitable enhancements of BI(P). 1
Comparing HigherOrder Encodings in Logical Frameworks and Tile Logic
, 2001
"... In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tr ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tracing di#erences and analogies on the basis of two case studies: late #calculus and lazy simply typed #calculus.
Abstract. KAN EXTENSIONS IN DOUBLE CATEGORIES (ON WEAK DOUBLE CATEGORIES, PART III)
"... are closely related to the orthogonal adjunctions introduced in a previous paper. The pointwise case is treated by introducing internal comma objects, which can be defined in an arbitrary double category. ..."
Abstract
 Add to MetaCart
(Show Context)
are closely related to the orthogonal adjunctions introduced in a previous paper. The pointwise case is treated by introducing internal comma objects, which can be defined in an arbitrary double category.