Results 1  10
of
35
Structured variable selection with sparsityinducing norms
, 2011
"... We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsityinducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual ℓ1norm and the group ℓ1norm by allowing the subsets to ov ..."
Abstract

Cited by 96 (17 self)
 Add to MetaCart
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsityinducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual ℓ1norm and the group ℓ1norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problems. We first explore the relationship between the groups defining the norm and the resulting nonzero patterns, providing both forward and backward algorithms to go back and forth from groups to patterns. This allows the design of norms adapted to specific prior knowledge expressed in terms of nonzero patterns. We also present an efficient active set algorithm, and analyze the consistency of variable selection for leastsquares linear regression in low and highdimensional settings.
Proximal Methods for Hierarchical Sparse Coding
, 2010
"... Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced treestructured sparse regularizatio ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced treestructured sparse regularization norm, which has proven useful in several applications. This norm leads to regularized problems that are difficult to optimize, and we propose in this paper efficient algorithms for solving them. More precisely, we show that the proximal operator associated with this norm is computable exactly via a dual approach that can be viewed as the composition of elementary proximal operators. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows the use of accelerated gradient techniques to solve the treestructured sparse approximation problem at the same computational cost as traditional ones using the ℓ1norm. Our method is efficient and scales gracefully to millions of variables, which we illustrate in two types of applications: first, we consider fixed hierarchical dictionaries of wavelets to denoise natural images. Then, we apply our optimization tools in the context of dictionary learning, where learned dictionary elements naturally organize in a prespecified arborescent structure, leading to a better performance in reconstruction of natural image patches. When applied to text documents, our method learns hierarchies of topics, thus providing a competitive alternative to probabilistic topic models.
Structured sparsityinducing norms through submodular functions
 IN ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2010
"... Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turnedinto a convex optimization problem byreplacing the cardinality function by its convex en ..."
Abstract

Cited by 29 (9 self)
 Add to MetaCart
Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turnedinto a convex optimization problem byreplacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the ℓ1norm. In this paper, we investigate more general setfunctions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nonincreasing submodular setfunctions, the corresponding convex envelope can be obtained from its Lovász extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or highdimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rankstatistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as nonfactorial priors for supervised learning.
Smoothing Proximal Gradient Method for General Structured Sparse Learning
"... We study the problem of learning high dimensional regression models regularized by a structuredsparsityinducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping group ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We study the problem of learning high dimensional regression models regularized by a structuredsparsityinducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping group lasso penalty, based on the ℓ1/ℓ2 mixednorm penalty, and 2) graphguided fusion penalty. For both types of penalties, due to their nonseparability, developing an efficient optimization method has remained a challenging problem. In this paper, we propose a general optimization approach, called smoothing proximal gradient method, which can solve the structured sparse regression problems with a smooth convex loss and a wide spectrum of structuredsparsityinducing penalties. Our approach is based on a general smoothing technique of Nesterov [17]. It achieves a convergence rate faster than the standard firstorder method, subgradient method, and is much more scalable than the most widely used interiorpoint method. Numerical results are reported to demonstrate the efficiency and scalability of the proposed method. 1
Convex and network flow optimization for structured sparsity
 JMLR
"... We consider a class of learning problems regularized by a structured sparsityinducing norm defined as the sum of ℓ2 or ℓ∞norms over groups of variables. Whereas much effort has been put in developing fast optimization techniques when the groups are disjoint or embedded in a hierarchy, we address ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
We consider a class of learning problems regularized by a structured sparsityinducing norm defined as the sum of ℓ2 or ℓ∞norms over groups of variables. Whereas much effort has been put in developing fast optimization techniques when the groups are disjoint or embedded in a hierarchy, we address here the case of general overlapping groups. To this end, we present two different strategies: On the one hand, we show that the proximal operator associated with a sum of ℓ∞norms can be computed exactly in polynomial time by solving a quadratic mincost flow problem, allowing the use of accelerated proximal gradient methods. On the other hand, we use proximal splitting techniques, and address an equivalent formulation with nonoverlapping groups, but in higher dimension and with additional constraints. We propose efficient and scalable algorithms exploiting these two strategies, which are significantly faster than alternative approaches. We illustrate these methods with several problems such as CUR matrix factorization, multitask learning of treestructured dictionaries, background subtraction in video sequences, image denoising with wavelets, and topographic dictionary learning of natural image patches.
Efficient first order methods for linear composite regularizers,” ArXiv preprint:1104.1436
, 2011
"... USA. A wide class of regularization problems in machine learning and statistics employ a regularization term which is obtained by composing a simple convex function ω with a linear transformation. This setting includes Group Lasso methods, the Fused Lasso and other total variation methods, multitas ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
USA. A wide class of regularization problems in machine learning and statistics employ a regularization term which is obtained by composing a simple convex function ω with a linear transformation. This setting includes Group Lasso methods, the Fused Lasso and other total variation methods, multitask learning methods and many more. In this paper, we present a general approach for computing the proximity operator of this class of regularizers, under the assumption that the proximity operator of the function ω is known in advance. Our approach builds on a recent line of research on optimal first order optimization methods and uses fixed point iterations for numerically computing the proximity operator. It is more general than current approaches and, as we show with numerical simulations, computationally more efficient
Efficient methods for overlapping group lasso
 In NIPS
, 2011
"... The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are g ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. We have performed empirical evaluations using both synthetic and the breast cancer gene expression data set, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing stateoftheart algorithms. 1
Convex analysis and optimization with submodular functions: a tutorial
"... Setfunctions appear in many areas of computer science and applied mathematics, such as machine learning [1, 2, 3, 4], computer vision [5, 6], operations research [7] or electrical networks [8]. Among these setfunctions, submodular functions play an important role, similar to convex functions on ve ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Setfunctions appear in many areas of computer science and applied mathematics, such as machine learning [1, 2, 3, 4], computer vision [5, 6], operations research [7] or electrical networks [8]. Among these setfunctions, submodular functions play an important role, similar to convex functions on vector spaces. In this tutorial, the theory of submodular
Efficient Sparse Modeling with Automatic Feature Grouping
"... The grouping of features is highly beneficial in learning with highdimensional data. It reduces the variance in the estimation and improves the stability of feature selection, leading to improved generalization. Moreover, it can also help in data understanding and interpretation. OSCAR is a recent ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The grouping of features is highly beneficial in learning with highdimensional data. It reduces the variance in the estimation and improves the stability of feature selection, leading to improved generalization. Moreover, it can also help in data understanding and interpretation. OSCAR is a recent sparse modeling tool that achieves this by using a ℓ1regularizer and a pairwise ℓ∞regularizer. However, its optimization is computationally expensive. In this paper, we propose an efficient solver based on the accelerated gradient methods. We show that its key projection step can be solved by a simple iterative group merging algorithm. It is highly efficient and reduces the empirical time complexity from O(d3 ∼ d5) for the existing solvers to just O(d), where d is the number of features. Experimental results on toy and realworld data sets demonstrate that OSCAR is a competitive sparse modeling approach with the added ability of automatic feature grouping. 1.