Results 1  10
of
38
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 621 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
Applications of Random Sampling in Computational Geometry, II
 Discrete Comput. Geom
, 1995
"... We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric ..."
Abstract

Cited by 396 (12 self)
 Add to MetaCart
We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divideandconquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requires O(A + n log n) expected time, where A is the number of intersecting pairs reported. The algorithm requires O(n) space in the worst case. Another algorithm computes the convex hull of n points in E d in O(n log n) expected time for d = 3, and O(n bd=2c ) expected time for d ? 3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set of n...
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 257 (41 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
Arrangements and Their Applications
 Handbook of Computational Geometry
, 1998
"... The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arr ..."
Abstract

Cited by 81 (20 self)
 Add to MetaCart
(Show Context)
The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arrangements to problems in motion planning, visualization, range searching, molecular modeling, and geometric optimization. Some results involving planar arrangements of arcs have been presented in a companion chapter in this book, and are extended in this chapter to higher dimensions. Work by P.A. was supported by Army Research Office MURI grant DAAH049610013, by a Sloan fellowship, by an NYI award, and by a grant from the U.S.Israeli Binational Science Foundation. Work by M.S. was supported by NSF Grants CCR9122103 and CCR9311127, by a MaxPlanck Research Award, and by grants from the U.S.Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Ac...
Vertical decomposition of shallow levels in 3dimensional arrangements and its applications
 SIAM J. Comput
"... Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a su ..."
Abstract

Cited by 60 (15 self)
 Add to MetaCart
Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subset of at most r functions of F. This bound is nearly optimal in the worst case, and implies the existence of shallow cuttings, in the sense of [52], of small size in arrangements of bivariate algebraic functions. We also present numerous applications of these results, including: (i) data structures for several generalized threedimensional rangesearching problems; (ii) dynamic data structures for planar nearest and farthestneighbor searching under various fairly general distance functions; (iii) an improved (nearquadratic) algorithm for minimumweight bipartite Euclidean matching in the plane; and (iv) efficient algorithms for certain geometric optimization problems in static and dynamic settings.
Efficient Searching with Linear Constraints (Extended Abstract)
"... ) Pankaj K. Agarwal Lars Arge y Jeff Erickson z Paolo G. Franciosa x Jeffrey Scott Vitter  Abstract We show how to preprocess a set S of points in R d to get an external memory data structure that efficiently supports linearconstraint queries. Each query is in the form of a linear c ..."
Abstract

Cited by 59 (17 self)
 Add to MetaCart
) Pankaj K. Agarwal Lars Arge y Jeff Erickson z Paolo G. Franciosa x Jeffrey Scott Vitter  Abstract We show how to preprocess a set S of points in R d to get an external memory data structure that efficiently supports linearconstraint queries. Each query is in the form of a linear constraint a \Delta x b; the data structure must report all the points of S that satisfy the query. Our goal is to minimize the number of disk blocks required to store the data structure and the number of disk accesses (I/Os) required to answer a query. For d = 2, we present the first nearlinear size data structures that can answer linearconstraint queries using an optimal number of I/Os. We also present a linearsize data structure that can answer queries efficiently in the worst case. We combine these two approaches to obtain tradeoffs between space and query time. Finally, we show that some of our techniques extend to higher dimensions d. Center for Geometric Computing, Computer...
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 50 (2 self)
 Add to MetaCart
(Show Context)
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
Point Sets With Many KSets
, 1999
"... For any n, k, n 2k > 0, we construct a set of n points in the plane with ne p log k ksets. This improves the bounds of Erd}os, Lovasz, et al. As a consequence, we also improve the lower bound of Edelsbrunner for the number of halving hyperplanes in higher dimensions. 1 Introduction For ..."
Abstract

Cited by 45 (0 self)
 Add to MetaCart
For any n, k, n 2k > 0, we construct a set of n points in the plane with ne p log k ksets. This improves the bounds of Erd}os, Lovasz, et al. As a consequence, we also improve the lower bound of Edelsbrunner for the number of halving hyperplanes in higher dimensions. 1 Introduction For a set P of n points in the ddimensional space, a kset is subset P 0 P such that P 0 = P \H for some halfspace H, and jP 0 j = k. The problem is to determine the maximum number of ksets of an npoint set in the ddimensional space. Even in the most studied two dimensional case, we are very far from the solution, and in higher dimensions even much less is known. The rst results in the two dimensional case are due to Erd}os, Lovasz, Simmons and Straus [L71], [ELSS73]. They established an upper bound O(n p k), and a lower bound (n log k). Despite great interest in this problem [W86], [E87], [S91], [EVW97], [AACS98], partly due to its importance in the analysis of geometric alg...
Random Sampling, Halfspace Range Reporting, and Construction of (≤k)Levels in Three Dimensions
 SIAM J. COMPUT
, 1999
"... Given n points in three dimensions, we show how to answer halfspace range reporting queries in O(logn+k) expected time for an output size k. Our data structure can be preprocessed in optimal O(n log n) expected time. We apply this result to obtain the first optimal randomized algorithm for the co ..."
Abstract

Cited by 32 (7 self)
 Add to MetaCart
(Show Context)
Given n points in three dimensions, we show how to answer halfspace range reporting queries in O(logn+k) expected time for an output size k. Our data structure can be preprocessed in optimal O(n log n) expected time. We apply this result to obtain the first optimal randomized algorithm for the construction of the ( k)level in an arrangement of n planes in three dimensions. The algorithm runs in O(n log n+nk²) expected time. Our techniques are based on random sampling. Applications in two dimensions include an improved data structure for "k nearest neighbors" queries, and an algorithm that constructs the orderk Voronoi diagram in O(n log n + nk log k) expected time.
On Levels in Arrangements of Curves
 Proc. 41st IEEE
, 2002
"... Analyzing the worstcase complexity of the klevel in a planar arrangement of n curves is a fundamental problem in combinatorial geometry. We give the first subquadratic upper bound (roughly O(nk 9 2 s 3 )) for curves that are graphs of polynomial functions of an arbitrary fixed degree s. Previously ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
(Show Context)
Analyzing the worstcase complexity of the klevel in a planar arrangement of n curves is a fundamental problem in combinatorial geometry. We give the first subquadratic upper bound (roughly O(nk 9 2 s 3 )) for curves that are graphs of polynomial functions of an arbitrary fixed degree s. Previously, nontrivial results were known only for the case s = 1 and s = 2. We also improve the earlier bound for pseudoparabolas (curves that pairwise intersect at most twice) to O(nk k). The proofs are simple and rely on a theorem of Tamaki and Tokuyama on cutting pseudoparabolas into pseudosegments, as well as a new observation for cutting pseudosegments into pieces that can be extended to pseudolines. We mention applications to parametric and kinetic minimum spanning trees.