Results 1 
8 of
8
A Semantic analysis of control
, 1998
"... This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that an intensional hierarchy of computational features such as state, and their fully abstract models, can be captured as violations of the constraints on strategies in the basic functional model. Nonlocal control flow is shown to fit into this framework as the violation of strong and weak ‘bracketing ’ conditions, related to linear behaviour. The language µPCF (Parigot’s λµ with constants and recursion) is adopted as a simple basis for highertype, sequential computation with access to the flow of control. A simple operational semantics for both callbyname and callbyvalue evaluation is described. It is shown that dropping the bracketing condition on games models of PCF yields fully abstract models of µPCF.
Definability and full abstraction
 GDP FESTSCHRIFT
"... Game semantics has renewed denotational semantics. It offers among other things an attractive classification of programming features, and has brought a bunch of new definability results. In parallel, in the denotational semantics of proof theory, several full completeness results have been shown sin ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
Game semantics has renewed denotational semantics. It offers among other things an attractive classification of programming features, and has brought a bunch of new definability results. In parallel, in the denotational semantics of proof theory, several full completeness results have been shown since the early nineties. In this note, we review the relation between definability and full abstraction, and we put a few old and recent results of this kind in perspective.
Sequentiality vs. Concurrency in Games and Logic
 Math. Structures Comput. Sci
, 2001
"... Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic. ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.
A constructive denotational semantics for Kahn networks in Coq
, 2007
"... Semantics of programming languages and interactive environments for the development of proofs and programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple language for parallel programming ” [11], he proposed an interpretation of (determin ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Semantics of programming languages and interactive environments for the development of proofs and programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple language for parallel programming ” [11], he proposed an interpretation of (deterministic) parallel programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders (cpos). A restriction of this language to synchronous programs is the basis of the dataflow Lustre language which is used for the development of critical embedded systems [14, 10]. We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose, we developed a general library for cpos. Our cpos are defined with an explicit function computing the least upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of having a concept closed by composition and recursion. The library is illustrated by the example taken from the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network. 1
Bistable biorders: a sequential domain theory
 Oura) Physics of Snow and Ice
, 2005
"... Abstract. We give a simple ordertheoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order — the extensional order — and a bistable coherence, which captures equivalence of program behaviour, up to permutation ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We give a simple ordertheoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order — the extensional order — and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top (error) and bottom (divergence). We show that monotone and bistable functions (which are required to preserve bistably bounded meets and joins) are strongly sequential, and use this fact to prove universality results for the bistable biorder semantics of the simplytyped lambdacalculus (with atomic constants), and an extension with arithmetic and recursion. We also construct a bistable model of SPCF, a higherorder functional programming language with nonlocal control. We use our universality result for the lambdacalculus to show that the semantics of SPCF is fully abstract. We then establish a direct correspondence between bistable functions and sequential algorithms by showing that sequential data structures give rise to bistable biorders, and that each bistable function between such biorders is computed by a sequential algorithm. 1.
Processes and Games
, 2003
"... A general theory of computing is important, if we wish to have a common mathematical footing based on which diverse scienti c and engineering eorts in computing are uniformly understood and integrated. A quest for such a general theory may take dierent paths. As a case for one of the possible paths ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A general theory of computing is important, if we wish to have a common mathematical footing based on which diverse scienti c and engineering eorts in computing are uniformly understood and integrated. A quest for such a general theory may take dierent paths. As a case for one of the possible paths towards a general theory, this paper establishes a precise connection between a gamebased model of sequential functions by Hyland and Ong on the one hand, and a typed version of the calculus on the other. This connection has been instrumental in our recent eorts to use the calculus as a basic mathematical tool for representing diverse classes of behaviours, even though the exact form of the correspondence has not been presented in a published form. By redeeming this correspondence we try to make explicit a convergence of ideas and structures between two distinct threads of Theoretical Computer Science. This convergence indicates a methodology for organising our understanding on computation and that methodology, we argue, suggests one of the promising paths to a general theory.
An Intensional Investigation of Parallelism
, 1994
"... Denotational semantics is usually extensional in that it deals only with input/output properties of programs by making the meaning of a program a function. Intensional semantics maps a program into an algorithm, thus enabling one to reason about complexity, order of evaluation, degree of parallelism ..."
Abstract
 Add to MetaCart
Denotational semantics is usually extensional in that it deals only with input/output properties of programs by making the meaning of a program a function. Intensional semantics maps a program into an algorithm, thus enabling one to reason about complexity, order of evaluation, degree of parallelism, efficiencyimproving program transformations, etc. I propose to develop intensional models for a number of parallel programming languages. The semantics will be implemented, resulting in a programming language of parallel algorithms, called CDSP. Applications of CDSP will be developed to determine its suitability for actual use. The thesis will hopefully make both theoretical and practical contributions: as a foundational study of parallelism by looking at the expressive power of various constructs, and with the design, implementation, and applications of an intensional parallel programming language. 1 Introduction Denotational semantics has now been around for about 25 years, which makes...