Results 1  10
of
119
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 243 (1 self)
 Add to MetaCart
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
Modelling gene expression data using dynamic bayesian networks
, 1999
"... Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of ..."
Abstract

Cited by 223 (1 self)
 Add to MetaCart
Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of Weaver et al. [WWS99] — are all special cases of a general class of models called Dynamic Bayesian Networks (DBNs). The advantages of DBNs include the ability to model stochasticity, to incorporate prior knowledge, and to handle hidden variables and missing data in a principled way. This paper provides a review of techniques for learning DBNs. Keywords: Genetic networks, boolean networks, Bayesian networks, neural networks, reverse engineering, machine learning. 1
Using bayesian networks to manage uncertainty in student modeling
 Journal of User Modeling and UserAdapted Interaction
, 2002
"... Abstract. When a tutoring system aims to provide students with interactive help, it needs to know what knowledge the student has and what goals the student is currently trying to achieve. That is, it must do both assessment and plan recognition. These modeling tasks involve a high level of uncertain ..."
Abstract

Cited by 183 (15 self)
 Add to MetaCart
(Show Context)
Abstract. When a tutoring system aims to provide students with interactive help, it needs to know what knowledge the student has and what goals the student is currently trying to achieve. That is, it must do both assessment and plan recognition. These modeling tasks involve a high level of uncertainty when students are allowed to follow various lines of reasoning and are not required to show all their reasoning explicitly. We use Bayesian networks as a comprehensive, sound formalism to handle this uncertainty. Using Bayesian networks, we have devised the probabilistic student models forAndes, a tutoring system forNewtonian physics whose philosophy is to maximize student initiative and freedom during the pedagogical interaction. Andes’ models provide longterm knowledge assessment, plan recognition, and prediction of students’ actions during problem solving, as well as assessment of students ’ knowledge and understanding as students read and explain worked out examples. In this paper, we describe the basic mechanisms that allow Andes ’ student models to soundly perform assessment and plan recognition, as well as the Bayesian network solutions to issues that arose in scaling up the model to a fullscale, ¢eld evaluated application. We also summarize the results of several evaluations of Andes which provide evidence on the accuracy of its student models.
Exploiting Causal Independence in Bayesian Network Inference
 Journal of Artificial Intelligence Research
, 1996
"... A new method is proposed for exploiting causal independencies in exact Bayesian network inference. ..."
Abstract

Cited by 181 (10 self)
 Add to MetaCart
(Show Context)
A new method is proposed for exploiting causal independencies in exact Bayesian network inference.
Online student modeling for coached problem solving using Bayesian networks
, 1997
"... Abstract. This paper describes the student modeling component of ANDES, an Intelligent Tutoring System for Newtonian physics. ANDES ’ student model uses a Bayesian network to do longterm knowledge assessment, plan recognition and prediction of students ’ actions during problem solving. The network ..."
Abstract

Cited by 137 (25 self)
 Add to MetaCart
Abstract. This paper describes the student modeling component of ANDES, an Intelligent Tutoring System for Newtonian physics. ANDES ’ student model uses a Bayesian network to do longterm knowledge assessment, plan recognition and prediction of students ’ actions during problem solving. The network is updated in real time, using an approximate anytime algorithm based on stochastic sampling, as a student solves problems with ANDES. The information in the student model is used by ANDES ’ Help system to tailor its support when the student reaches impasses in the problem solving process. In this paper, we describe the knowledge structures represented in the student model and discuss the implementation of the Bayesian network assessor. We also present a preliminary evaluation of the time performance of stochastic sampling algorithms to update the network. 1
Decision Theory in Expert Systems and Artificial Intelligence
 International Journal of Approximate Reasoning
, 1988
"... Despite their different perspectives, artificial intelligence (AI) and the disciplines of decision science have common roots and strive for similar goals. This paper surveys the potential for addressing problems in representation, inference, knowledge engineering, and explanation within the decision ..."
Abstract

Cited by 105 (19 self)
 Add to MetaCart
(Show Context)
Despite their different perspectives, artificial intelligence (AI) and the disciplines of decision science have common roots and strive for similar goals. This paper surveys the potential for addressing problems in representation, inference, knowledge engineering, and explanation within the decisiontheoretic framework. Recent analyses of the restrictions of several traditional AI reasoning techniques, coupled with the development of more tractable and expressive decisiontheoretic representation and inference strategies, have stimulated renewed interest in decision theory and decision analysis. We describe early experience with simple probabilistic schemes for automated reasoning, review the dominant expertsystem paradigm, and survey some recent research at the crossroads of AI and decision science. In particular, we present the belief network and influence diagram representations. Finally, we discuss issues that have not been studied in detail within the expertsystems sett...
AISBN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks
 Journal of Artificial Intelligence Research
, 2000
"... Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, ..."
Abstract

Cited by 96 (4 self)
 Add to MetaCart
(Show Context)
Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AISBN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in nitedimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from dierent stages of the algorithm. We tested the performance of the AISBN algorithm along with two state of the art general purpose sampling algorithms, lik...
A new look at causal independence
 In Proc. of the Tenth Conference on Uncertainty in Artificial Ingelligence
, 1994
"... Heckerman (1993) defined causal independence in terms of a set of temporal conditional independence statements. These statements formalized certain types of causal interaction where (1) the effect is independent of the order that causes are introduced and (2) the impact of a single cause on the effe ..."
Abstract

Cited by 79 (4 self)
 Add to MetaCart
Heckerman (1993) defined causal independence in terms of a set of temporal conditional independence statements. These statements formalized certain types of causal interaction where (1) the effect is independent of the order that causes are introduced and (2) the impact of a single cause on the effect does not depend on what other causes have previously been applied. In this paper, we introduce an equivalent atemporal characterization of causal independence based on a functional representation of the relationship between causes and the effect. In this representation, the interaction between causes and effect can be written as a nested decomposition of functions. Causal independence can be exploited by representing this decomposition in the belief network, resulting in representations that are more efficient for inference than general causal models. We present empirical results showing the benefits of a causalindependence representation for beliefnetwork inference. 1
Parameter adjustment in Bayes networks. The generalized noisy ORgate
 IN PROCEEDINGS OF THE 9TH CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
, 1993
"... Spiegelhalter and Lauritzen [15] studied sequential learning in Bayesian networks and proposed three models for the representation of conditional probabilities. A forth model, shown here, assumes that the parameter distribution is given by a product of Gaussian functions and updates them from ..."
Abstract

Cited by 75 (12 self)
 Add to MetaCart
(Show Context)
Spiegelhalter and Lauritzen [15] studied sequential learning in Bayesian networks and proposed three models for the representation of conditional probabilities. A forth model, shown here, assumes that the parameter distribution is given by a product of Gaussian functions and updates them from the and messages of evidence propagation. We also generalize the noisy ORgate for multivalued variables, develop the algorithm to compute probability in time proportional to the number of parents (even in networks with loops) and apply the learning model to this gate.
Causal independence for probability assessment and inference using Bayesian networks
 IEEE Trans. on Systems, Man and Cybernetics
, 1994
"... ABayesian network is a probabilistic representation for uncertain relationships, which has proven to be useful for modeling realworld problems. When there are many potential causes of a given e ect, however, both probability assessment and inference using a Bayesian network can be di cult. In this ..."
Abstract

Cited by 74 (4 self)
 Add to MetaCart
ABayesian network is a probabilistic representation for uncertain relationships, which has proven to be useful for modeling realworld problems. When there are many potential causes of a given e ect, however, both probability assessment and inference using a Bayesian network can be di cult. In this paper, we describe causal independence, a collection of conditional independence assertions and functional relationships that are often appropriate to apply to the representation of the uncertain interactions between causes and e ect. We show how the use of causal independence in a Bayesian network can greatly simplify probability assessment aswell as probabilistic inference. 1