Results 11  20
of
175
Conformal Field Theory and Elliptic Cohomology
"... The purpose of the present paper is to address an old question (posed by Segal [37]) to find a geometric construction of elliptic cohomology. This question has recently become much more pressing due to the work of Mike Hopkins and Haynes Miller [19], who constructed exactly the “right”, or universal ..."
Abstract

Cited by 37 (9 self)
 Add to MetaCart
The purpose of the present paper is to address an old question (posed by Segal [37]) to find a geometric construction of elliptic cohomology. This question has recently become much more pressing due to the work of Mike Hopkins and Haynes Miller [19], who constructed exactly the “right”, or universal, elliptic cohomology,
Axioms For Bigraphical Structure
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2005
"... This paper axiomatises the structure of bigraphs, and proves that the resulting theory is complete. Bigraphs are graphs with double structure, representing locality and connectivity. They have been shown to represent dynamic theories for the #calculus, mobile ambients and Petri nets, in a way th ..."
Abstract

Cited by 36 (8 self)
 Add to MetaCart
This paper axiomatises the structure of bigraphs, and proves that the resulting theory is complete. Bigraphs are graphs with double structure, representing locality and connectivity. They have been shown to represent dynamic theories for the #calculus, mobile ambients and Petri nets, in a way that is faithful to each of those models of discrete behaviour. While the main purpose of bigraphs is to understand mobile systems, a prerequisite for this understanding is a wellbehaved theory of the structure of states in such systems. The algebra of bigraph structure is surprisingly simple, as the paper demonstrates; this is because bigraphs treat locality and connectivity orthogonally
Process and Term Tile Logic
, 1998
"... In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis o ..."
Abstract

Cited by 34 (25 self)
 Add to MetaCart
In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis of several language implementation efforts, it is useful to map tile logic back into rewriting logic in a conservative way, to obtain executable specifications of tile systems. We extend the results of earlier work by two of the authors, focusing on some interesting cases where the mathematical structures representing configurations (i.e., states) and effects (i.e., observable actions) are very similar, in the sense that they have in common some auxiliary structure (e.g., for tupling, projecting, etc.). In particular, we give in full detail the descriptions of two such cases where (net) processlike and usual term structures are employed. Corresponding to these two cases, we introduce two ca...
A 2Categorical Presentation of Term Graph Rewriting
 CATEGORY THEORY AND COMPUTER SCIENCE, VOLUME 1290 OF LNCS
, 1997
"... It is wellknown that a term rewriting system can be faithfully described by a cartesian 2category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2categorical presentation for term graph rewriting. Building on a re ..."
Abstract

Cited by 34 (17 self)
 Add to MetaCart
It is wellknown that a term rewriting system can be faithfully described by a cartesian 2category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2categorical presentation for term graph rewriting. Building on a result presented in [8], which shows that term graphs over a given signature are in onetoone correspondence with arrows of a gsmonoidal category freely generated from the signature, we associate with a term graph rewriting system a gsmonoidal 2category, and show that cells faithfully represent its rewriting sequences. We exploit the categorical framework to relate term graph rewriting and term rewriting, since gsmonoidal (2)categories can be regarded as "weak" cartesian (2)categories, where certain (2)naturality axioms have been dropped.
TRIPLES, ALGEBRAS AND COHOMOLOGY
 REPRINTS IN THEORY AND APPLICATIONS OF CATEGORIES
, 2003
"... ..."
An Inductive View of Graph Transformation
 In Workshop on Algebraic Development Techniques
, 1998
"... . The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result i ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
. The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgsmonoidal category. We then apply 2categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the...
Cohomology of Algebraic Theories
 J. of Algebra
, 1991
"... this paper were announced in [11], [18]. Some of them were obtained by the second author only, in particular, the main theorem of Section 2. 2. On the Mac Lane Cohomology In this section we prove Theorem A, which is concerned with the relationship between Mac Lane cohomology of rings and Ext groups ..."
Abstract

Cited by 30 (17 self)
 Add to MetaCart
this paper were announced in [11], [18]. Some of them were obtained by the second author only, in particular, the main theorem of Section 2. 2. On the Mac Lane Cohomology In this section we prove Theorem A, which is concerned with the relationship between Mac Lane cohomology of rings and Ext groups in functor categories; related questions are discussed. Let us recall the denition of the Mac Lane cohomology from [13]. Consider the sets Cn with 2 n elements  ntuples ("1 ; :::; "n ), where " i = 0 or 1, for n > 0 and i 6 n, and the 0tuple ( ) for n = 0. For convenience Cn can be visualized as the set of vertices of an ncube, the product of n copies of the 1cube with vertices 0 and 1. Dene maps 0 i ; 1 i : Cn ! Cn+1 , 1 6 i 6 n + 1, by the equalities 0 i ("1 ; :::; "n) = ("1 ; :::; " i 1 ; 0; " i+1 ; :::; "n ); 1 i ("1 ; :::; "n) = ("1 ; :::; " i 1 ; 1; " i+1 ; :::; "n ): For an abelian group A and a set S, let A[S] denote the sum of S copies of the group A. Since the sets Cn are nite, the group A[Cn ] can be identied with the group of all maps t : Cn ! A: Let Q 0 n (A) be the free abelian group generated by the set A[Cn ], i. e., Q 0 n (A) = Z[A[Cn ]]: Following Mac Lane [13], dene for i = 1; 2; :::; n the homomorphisms R i ; S i ; P i : Q 0 n (A) ! Q 0 n 1 (A) by R i = Z[R i ]; S i = Z[S i ]; P i = Z[P i ]; COHOMOLOGY OF ALGEBRAIC THEORIES 257 where R i ; S i ; P i : A[Cn ] ! A[Cn 1 ] are homomorphisms dened for e 2 Cn 1 and t 2 A[Cn ] by (R i t)(e) = t(0 i e); (S i t)(e) = t(1 i e); (P i t)(e) = t(0 i e) + t(1 i e): In [13], Mac Lane denes the boundary homomorphism @ : Q 0 n (A) ! Q 0 n 1 (A) by the equality @ = n X i=1 ( 1) i (P i R i S i ): A generator t : Cn ! A of the group Q 0 n (A) is called a slab when t( ) = 0, for n...
Towards an algebraic theory of Boolean circuits
 Journal of Pure and Applied Algebra
, 2003
"... Boolean circuits are used to represent programs on finite data. Reversible Boolean circuits and quantum Boolean circuits have been introduced to modelize some physical aspects of computation. Those notions are essential in complexity theory, but we claim that a deep mathematical theory is needed to ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
Boolean circuits are used to represent programs on finite data. Reversible Boolean circuits and quantum Boolean circuits have been introduced to modelize some physical aspects of computation. Those notions are essential in complexity theory, but we claim that a deep mathematical theory is needed to make progress in this area. For that purpose, the recent developments of knot theory is a major source of inspiration. Following the ideas of Burroni, we consider logical gates as generators for some algebraic structure with two compositions, and we are interested in the relations satisfied by those generators. For that purpose, we introduce canonical forms and rewriting systems. Up to now, we have mainly studied the basic case and the linear case, but we hope that our methods can be used to get presentations by generators and relations for the (reversible) classical case and for the (unitary) quantum case.
Transition systems, link graphs and Petri nets
, 2004
"... A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavi ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be congruential. The theory rests upon the notion of relative pushout previously introduced by the authors. The framework
Deo/nitions: operads, algebras and modules
 Contemporary Mathematics 202
, 1997
"... There are many different types of algebra: associative, associative and commutative, Lie, Poisson, etc., etc. Each comes with an appropriate notion of a module. As is becoming more and more important in a variety of fields, it is often necessary to deal with algebras and modules of these sorts “up t ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
There are many different types of algebra: associative, associative and commutative, Lie, Poisson, etc., etc. Each comes with an appropriate notion of a module. As is becoming more and more important in a variety of fields, it is often necessary to deal with algebras and modules of these sorts “up to homotopy”. I shall give a very partial overview, concentrating on algebra, but saying a little about the original use of operads in topology. The development of abstract frameworks in which to study such algebras has a long history. As this conference attests, it now seems to be widely accepted that, for many purposes, the most convenient setting is that given by operads and their actions. While the notion was first written up in a purely topological framework [19], it was thoroughly understood by 1971 [12] that the basic definitions apply equally well in any underlying symmetric monoidal ( = tensor) category. The definitions and ideas had many precursors. I will indicate those that I was aware of at the time. • Algebraists such as Kaplansky, Herstein, and Jacobson systematically studied