Results 1  10
of
31
Maximum Planar Subgraphs and Nice Embeddings: Practical Layout Tools
 ALGORITHMICA
, 1996
"... ..."
A Better Approximation Algorithm for Finding Planar Subgraphs
 J. ALGORITHMS
, 1996
"... The MAXIMUM PLANAR SUBGRAPH problemgiven a graph G, find a largest planar subgraph of Ghas applications in circuit layout, facility layout, and graph drawing. No previous polynomialtime approximation algorithm for this NPComplete problem was known to achieve a performance ratio larger than ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
The MAXIMUM PLANAR SUBGRAPH problemgiven a graph G, find a largest planar subgraph of Ghas applications in circuit layout, facility layout, and graph drawing. No previous polynomialtime approximation algorithm for this NPComplete problem was known to achieve a performance ratio larger than 1=3, which is achieved simply by producing a spanning tree of G. We present the first approximation algorithm for MAXIMUM PLANAR SUBGRAPH with higher performance ratio (4=9 instead of 1=3). We also apply our algorithm to find large outerplanar subgraphs. Last, we show that both MAXIMUM PLANAR SUBGRAPH and its complement, the problem of removing as few edges as possible to leave a planar subgraph, are Max SNPHard.
Routing with guaranteed delivery in geometric and wireless networks
 in Handbook of Wireless Networks and Mobile Computing, I. Stojmenovic, Ed. New York:Wiley
, 2002
"... ..."
The Thickness of Graphs: A Survey
 Graphs Combin
, 1998
"... We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a ba ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
(Show Context)
We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs. Key words: Thickness, maximum planar subgraph, branch and cut 1 Introduction In VLSI circuit design, a chip is represented as a hypergraph consisting of nodes corresponding to macrocells and of hyperedges corresponding to the nets connecting the cells. A chipdesigner has to place the macrocells on a printed circuit board (which usually consists of superimposed layers), according to several designing rules. One of these requirements is to avoid crossings, since crossings lead to undesirable signals. It is therefore desirable to find ways to handle wi...
Solving the Maximum Weight Planar Subgraph Problem by Branch and Cut
 PROCEEDINGS OF THE THIRD CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... In this paper we investigate the problem of identifying a planar subgraph of maximum weight of a given edge weighted graph. In the theoretical part of the paper, the polytope of all planar subgraphs of a graph G is defined and studied. All subgraphs of a graph G, which are subdivisions of K 5 or K 3 ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
In this paper we investigate the problem of identifying a planar subgraph of maximum weight of a given edge weighted graph. In the theoretical part of the paper, the polytope of all planar subgraphs of a graph G is defined and studied. All subgraphs of a graph G, which are subdivisions of K 5 or K 3;3 , turn out to define facets of this polytope. We also present computational experience with a branch and cut algorithm for the above problem. Our approach is based on an algorithm which searches for forbidden substructures in a graph that contains a subdivision of K 5 or K 3;3 . These structures give us inequalities which are used as cutting planes.
A New Approximation Algorithm for Finding Heavy Planar Subgraphs
 ALGORITHMICA
, 1997
"... We provide the first nontrivial approximation algorithm for MAXIMUM WEIGHT PLANAR SUBGRAPH, the NPHard problem of finding a heaviest planar subgraph in an edgeweighted graph G. This problem has applications in circuit layout, facility layout, and graph drawing. No previous algorithm for MAXIMUM ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
We provide the first nontrivial approximation algorithm for MAXIMUM WEIGHT PLANAR SUBGRAPH, the NPHard problem of finding a heaviest planar subgraph in an edgeweighted graph G. This problem has applications in circuit layout, facility layout, and graph drawing. No previous algorithm for MAXIMUM WEIGHT PLANAR SUBGRAPH had performance ratio exceeding 1=3, which is obtained by any algorithm that produces a maximum weight spanning tree in G. Based on the BermanRamaiyer Steiner tree algorithm, the new algorithm has performance ratio at least 1/3 + 1/72. We also show that if G is complete and its edge weights satisfy the triangle inequality, then the performance ratio is at least 3/8. Furthermore, we derive the first nontrivial performance ratio (7/12 instead of 1/2) for the NPHard MAXIMUM WEIGHT OUTERPLANAR SUBGRAPH problem.
Graph Planarization and Skewness
"... The problem of finding a maximum spanning planar subgraph of a nonplanar graph is NPComplete. Several heuristics for the problem have been devised but their worstcase performance is unknown, although a trivial lower bound of 1/3 the optimum number of edges is easily shown. We discuss a new heurist ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
The problem of finding a maximum spanning planar subgraph of a nonplanar graph is NPComplete. Several heuristics for the problem have been devised but their worstcase performance is unknown, although a trivial lower bound of 1/3 the optimum number of edges is easily shown. We discuss a new heuristic, based on spanning trees, for generating a subgraph with size at least 2/3 of the optimum for any input graph. The skewness of the ndimensional hypercube Qn is also derived. Finally, we explore the relationship between the skewness and crossing number of a graph.
Algorithm 797: Fortran Subroutines for Approximate Solution Of . . .
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1999
"... ..."
SPLITTING NUMBER is NPcomplete
, 1997
"... We consider two graph invariants that are used as a measure of nonplanarity: the splitting number of a graph and the size of a maximum planar subgraph. The splitting number of a graph G is the smallest integer k 0, such that a planar graph can be obtained from G by k splitting operations. Such ope ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
We consider two graph invariants that are used as a measure of nonplanarity: the splitting number of a graph and the size of a maximum planar subgraph. The splitting number of a graph G is the smallest integer k 0, such that a planar graph can be obtained from G by k splitting operations. Such operation replaces a vertex v by two nonadjacent vertices v 1 and v 2 , and attaches the neighbors of v either to v 1 or to v 2 . We prove that the splitting number decision problem is NPcomplete. We obtain as a consequence that planar subgraph remains NPcomplete when restricted to graphs with maximum degree 3, when restricted to graphs with no subdivision of K 5 , or when restricted to cubic graphs, problems that have been open since 1979.