Results 1  10
of
65
Logic and precognizable sets of integers
 Bull. Belg. Math. Soc
, 1994
"... We survey the properties of sets of integers recognizable by automata when they are written in pary expansions. We focus on Cobham’s theorem which characterizes the sets recognizable in different bases p and on its generalization to N m due to Semenov. We detail the remarkable proof recently given ..."
Abstract

Cited by 68 (4 self)
 Add to MetaCart
We survey the properties of sets of integers recognizable by automata when they are written in pary expansions. We focus on Cobham’s theorem which characterizes the sets recognizable in different bases p and on its generalization to N m due to Semenov. We detail the remarkable proof recently given by Muchnik for the theorem of CobhamSemenov, the original proof being published in Russian. 1
A characterization of substitutive sequences using return words. Discrete Mathematics
, 1998
"... We prove that a sequence is primitive substitutive if and only if the set of its derived sequences is finite; we defined these sequences here. ..."
Abstract

Cited by 59 (7 self)
 Add to MetaCart
We prove that a sequence is primitive substitutive if and only if the set of its derived sequences is finite; we defined these sequences here.
The ubiquitous ProuhetThueMorse sequence
 Sequences and their applications, Proceedings of SETA’98
, 1999
"... We discuss a wellknown binary sequence called the ThueMorse sequence, or the ProuhetThueMorse sequence. This sequence was introduced by Thue in 1906 and rediscovered by Morse in 1921. However, it was already implicit in an 1851 paper of Prouhet. The ProuhetThueMorse sequence appears to be som ..."
Abstract

Cited by 59 (9 self)
 Add to MetaCart
We discuss a wellknown binary sequence called the ThueMorse sequence, or the ProuhetThueMorse sequence. This sequence was introduced by Thue in 1906 and rediscovered by Morse in 1921. However, it was already implicit in an 1851 paper of Prouhet. The ProuhetThueMorse sequence appears to be somewhat ubiquitous, and we describe many of its apparently unrelated occurrences.
The Ring of kRegular Sequences
, 1992
"... The automatic sequence is the central concept at the intersection of formal language theory and number theory. It was introduced by Cobham, and has been extensively studied by Christol, Kamae, Mendes France and Rauzy, and other writers. Since the range of automatic sequences is nite, however, their ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
The automatic sequence is the central concept at the intersection of formal language theory and number theory. It was introduced by Cobham, and has been extensively studied by Christol, Kamae, Mendes France and Rauzy, and other writers. Since the range of automatic sequences is nite, however, their descriptive power is severely limited.
On the complexity of algebraic numbers I. Expansions in integer bases
, 2005
"... Let b ≥ 2 be an integer. We prove that the badic expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. O ..."
Abstract

Cited by 33 (21 self)
 Add to MetaCart
Let b ≥ 2 be an integer. We prove that the badic expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.
Axel Thue's work on repetitions in words
 Invited Lecture at the 4th Conference on Formal Power Series and Algebraic Combinatorics
, 1992
"... The purpose of this survey is to present, in contemporary terminology, the fundamental contributions of Axel Thue to the study of combinatorial properties of sequences of symbols, insofar as repetitions are concerned. The present state of the art is also sketched. ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
The purpose of this survey is to present, in contemporary terminology, the fundamental contributions of Axel Thue to the study of combinatorial properties of sequences of symbols, insofar as repetitions are concerned. The present state of the art is also sketched.
Palindromic continued fractions
 Ann. Inst. Fourier
"... On the complexity of algebraic numbers, II. ..."
Numeration systems on a regular language
 Theory Comput. Syst
"... Generalizations of linear numeration systems in which IN is recognizable by finite automata are obtained by describing an arbitrary infinite regular language following the lexicographic ordering. For these systems of numeration, we show that ultimately periodic sets are recognizable. We also study t ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Generalizations of linear numeration systems in which IN is recognizable by finite automata are obtained by describing an arbitrary infinite regular language following the lexicographic ordering. For these systems of numeration, we show that ultimately periodic sets are recognizable. We also study the translation and the multiplication by constants as well as the orderdependence of the recognizability. 1
Entropy rates and finitestate dimension
 THEORETICAL COMPUTER SCIENCE
, 2005
"... The effective fractal dimensions at the polynomialspace level and above can all be equivalently defined as the Centropy rate where C is the class of languages corresponding to the level of effectivization. For example, pspacedimension is equivalent to the PSPACEentropy rate. At lower levels of c ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
The effective fractal dimensions at the polynomialspace level and above can all be equivalently defined as the Centropy rate where C is the class of languages corresponding to the level of effectivization. For example, pspacedimension is equivalent to the PSPACEentropy rate. At lower levels of complexity the equivalence proofs break down. In the polynomialtime case, the Pentropy rate is a lower bound on the pdimension. Equality seems unlikely, but separating the Pentropy rate from pdimension would require proving P != NP. We show that at the finitestate level, the opposite of the polynomialtime case happens: the REGentropy rate is an upper bound on the finitestate dimension. We also use the finitestate genericity of AmbosSpies and Busse (2003) to separate finitestate dimension from the REGentropy rate. However, we point out that a blockentropy rate characterization of finitestate dimension follows from the work of Ziv and Lempel (1978) on finitestate compressibility and the compressibility characterization of finitestate dimension by Dai, Lathrop, Lutz, and Mayordomo (2004). As applications of the REGentropy rate upper bound and the blockentropy rate characterization, we prove that every regular language has finitestate dimension 0 and that normality is equivalent to finitestate dimension 1.
A generalization of Cobham’s theorem
 Theory Comput. Syst
, 1998
"... Abstract If a nonperiodic sequence X is the image by a morphism of a fixed point of both a primitive substitution σ and a primitive substitution τ, then the dominant eigenvalues of the matrices of σ and of τ are multiplicatively dependent. This is the way we propose to generalize Cobham’s Theorem. ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Abstract If a nonperiodic sequence X is the image by a morphism of a fixed point of both a primitive substitution σ and a primitive substitution τ, then the dominant eigenvalues of the matrices of σ and of τ are multiplicatively dependent. This is the way we propose to generalize Cobham’s Theorem. 1