Results 1  10
of
118
The ubiquitous ProuhetThueMorse sequence
 Sequences and their applications, Proceedings of SETA’98
, 1999
"... We discuss a wellknown binary sequence called the ThueMorse sequence, or the ProuhetThueMorse sequence. This sequence was introduced by Thue in 1906 and rediscovered by Morse in 1921. However, it was already implicit in an 1851 paper of Prouhet. The ProuhetThueMorse sequence appears to be som ..."
Abstract

Cited by 89 (14 self)
 Add to MetaCart
(Show Context)
We discuss a wellknown binary sequence called the ThueMorse sequence, or the ProuhetThueMorse sequence. This sequence was introduced by Thue in 1906 and rediscovered by Morse in 1921. However, it was already implicit in an 1851 paper of Prouhet. The ProuhetThueMorse sequence appears to be somewhat ubiquitous, and we describe many of its apparently unrelated occurrences.
Logic and precognizable sets of integers
 Bull. Belg. Math. Soc
, 1994
"... We survey the properties of sets of integers recognizable by automata when they are written in pary expansions. We focus on Cobham’s theorem which characterizes the sets recognizable in different bases p and on its generalization to N m due to Semenov. We detail the remarkable proof recently given ..."
Abstract

Cited by 88 (4 self)
 Add to MetaCart
(Show Context)
We survey the properties of sets of integers recognizable by automata when they are written in pary expansions. We focus on Cobham’s theorem which characterizes the sets recognizable in different bases p and on its generalization to N m due to Semenov. We detail the remarkable proof recently given by Muchnik for the theorem of CobhamSemenov, the original proof being published in Russian. 1
A characterization of substitutive sequences using return words
 DISCRETE MATHEMATICS
, 1998
"... We prove that a sequence is primitive substitutive if and only if the set of its derived sequences is finite; we defined these sequences here. ..."
Abstract

Cited by 87 (11 self)
 Add to MetaCart
We prove that a sequence is primitive substitutive if and only if the set of its derived sequences is finite; we defined these sequences here.
The Ring of kRegular Sequences
, 1992
"... The automatic sequence is the central concept at the intersection of formal language theory and number theory. It was introduced by Cobham, and has been extensively studied by Christol, Kamae, Mendes France and Rauzy, and other writers. Since the range of automatic sequences is nite, however, their ..."
Abstract

Cited by 62 (12 self)
 Add to MetaCart
The automatic sequence is the central concept at the intersection of formal language theory and number theory. It was introduced by Cobham, and has been extensively studied by Christol, Kamae, Mendes France and Rauzy, and other writers. Since the range of automatic sequences is nite, however, their descriptive power is severely limited.
On the complexity of algebraic numbers I. Expansions in integer bases
, 2005
"... Let b ≥ 2 be an integer. We prove that the badic expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. O ..."
Abstract

Cited by 48 (24 self)
 Add to MetaCart
Let b ≥ 2 be an integer. We prove that the badic expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.
Axel Thue's work on repetitions in words
 Invited Lecture at the 4th Conference on Formal Power Series and Algebraic Combinatorics
, 1992
"... The purpose of this survey is to present, in contemporary terminology, the fundamental contributions of Axel Thue to the study of combinatorial properties of sequences of symbols, insofar as repetitions are concerned. The present state of the art is also sketched. ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
(Show Context)
The purpose of this survey is to present, in contemporary terminology, the fundamental contributions of Axel Thue to the study of combinatorial properties of sequences of symbols, insofar as repetitions are concerned. The present state of the art is also sketched.
Palindromic continued fractions
 Ann. Inst. Fourier
"... On the complexity of algebraic numbers, II. ..."
(Show Context)
Complexity of sequences and dynamical systems
 Discr. Math
, 1999
"... In recent years, there has been a number of papers about the combinatorial notion of symbolic complexity: this is the function counting the number of factors of length n for a sequence. The complexity is an indication of the degree of randomness of the sequence: a periodic sequence has a bounded com ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
(Show Context)
In recent years, there has been a number of papers about the combinatorial notion of symbolic complexity: this is the function counting the number of factors of length n for a sequence. The complexity is an indication of the degree of randomness of the sequence: a periodic sequence has a bounded complexity, the expansion of a normal number has an exponential complexity. For a given sequence, the complexity function is generally not of easy access, and it is a rich and instructive work to compute it; a survey of this kind of results can be found in [ALL]. We are interested here in further results in the theory of symbolic complexity, somewhat beyond the simple question of computing the complexity of various sequences. These lie mainly in two directions; first, we give a survey of an open question which is still very much in progress, namely: to determine which functions can be the symbolic complexity function of a sequence. Then, we investigate the links between the complexity of a sequence and its associated dynamical system, and insist on the cases where the knowledge of
Numeration systems on a regular language
 Theory Comput. Syst
"... Generalizations of linear numeration systems in which IN is recognizable by finite automata are obtained by describing an arbitrary infinite regular language following the lexicographic ordering. For these systems of numeration, we show that ultimately periodic sets are recognizable. We also study t ..."
Abstract

Cited by 22 (9 self)
 Add to MetaCart
(Show Context)
Generalizations of linear numeration systems in which IN is recognizable by finite automata are obtained by describing an arbitrary infinite regular language following the lexicographic ordering. For these systems of numeration, we show that ultimately periodic sets are recognizable. We also study the translation and the multiplication by constants as well as the orderdependence of the recognizability. 1