Results 1  10
of
126
A tutorial on support vector machines for pattern recognition
 Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract

Cited by 2272 (11 self)
 Add to MetaCart
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 473 (2 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, offtheshelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic and computational results developed for SV M light V2.0, which make largescale SVM training more practical. The results give guidelines for the application of SVMs to large domains.
Sparse Greedy Matrix Approximation for Machine Learning
, 2000
"... In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the ..."
Abstract

Cited by 179 (11 self)
 Add to MetaCart
In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the design matrix. Experimental results are given and connections to KernelPCA, Sparse Kernel Feature Analysis, and Matching Pursuit are pointed out. 1. Introduction Many recent advances in machine learning such as Support Vector Machines [Vapnik, 1995], Regularization Networks [Girosi et al., 1995], or Gaussian Processes [Williams, 1998] are based on kernel methods. Given an msample f(x 1 ; y 1 ); : : : ; (x m ; y m )g of patterns x i 2 X and target values y i 2 Y these algorithms minimize the regularized risk functional min f2H R reg [f ] = 1 m m X i=1 c(x i ; y i ; f(x i )) + 2 kfk 2 H : (1) Here H denotes a reproducing kernel Hilbert space (RKHS) [Aronszajn, 1950],...
The Connection between Regularization Operators and Support Vector Kernels
, 1998
"... In this paper a correspondence is derived between regularization operators used in Regularization Networks and Support Vector Kernels. We prove that the Green's Functions associated with regularization operators are suitable Support Vector Kernels with equivalent regularization properties. Moreover ..."
Abstract

Cited by 146 (43 self)
 Add to MetaCart
In this paper a correspondence is derived between regularization operators used in Regularization Networks and Support Vector Kernels. We prove that the Green's Functions associated with regularization operators are suitable Support Vector Kernels with equivalent regularization properties. Moreover the paper provides an analysis of currently used Support Vector Kernels in the view of regularization theory and corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed on periodical domains. As a byproduct we show that a large number of Radial Basis Functions, namely conditionally positive definite functions, may be used as Support Vector kernels.
An InteriorPoint Algorithm For Nonconvex Nonlinear Programming
 COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
, 1997
"... The paper describes an interiorpoint algorithm for nonconvex nonlinear programming which is a direct extension of interiorpoint methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the mer ..."
Abstract

Cited by 144 (13 self)
 Add to MetaCart
The paper describes an interiorpoint algorithm for nonconvex nonlinear programming which is a direct extension of interiorpoint methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the merit function is obtained. Preliminary numerical testing indicates that the method is robust. Further, numerical comparisons with MINOS and LANCELOT show that the method is efficient, and has the promise of greatly reducing solution times on at least some classes of models.
Cluster Reserves: A Mechanism for Resource Management in Clusterbased Network Servers
 In Proceedings of the ACM SIGMETRICS Conference
, 2000
"... In network (e.g., Web) servers, it is often desirable to isolate the performance of different classes of requests from each other. That is, one seeks to achieve that a certain minimal proportion of server resources are available for a class of requests, independent of the load imposed by other reque ..."
Abstract

Cited by 144 (4 self)
 Add to MetaCart
In network (e.g., Web) servers, it is often desirable to isolate the performance of different classes of requests from each other. That is, one seeks to achieve that a certain minimal proportion of server resources are available for a class of requests, independent of the load imposed by other requests. Recent work demonstrates how to achieve this performance isolation in servers consisting of a single, centralized node; however, achieving performance isolation in a distributed, cluster based server remains a problem. This paper introduces a new abstraction, the cluster reserve, which represents a resource principal in a cluster based network server. We present a design and evaluate a prototype implementation that extends existing techniques for performance isolation on a single node server to cluster based servers. In our design, the dynamic clusterwide resource management problem is formulated as a constrained optimization problem, with the resource allocations on individual machin...
T.: Hierarchical document categorization with support vector machines
 In: Proceedings of the 13th Conference on Information and Knowledge Management
, 2004
"... Automatically categorizing documents into predefined topic hierarchies or taxonomies is a crucial step in knowledge and content management. Standard machine learning techniques like Support Vector Machines and related large margin methods have been successfully applied for this task, albeit the fac ..."
Abstract

Cited by 113 (4 self)
 Add to MetaCart
Automatically categorizing documents into predefined topic hierarchies or taxonomies is a crucial step in knowledge and content management. Standard machine learning techniques like Support Vector Machines and related large margin methods have been successfully applied for this task, albeit the fact that they ignore the interclass relationships. In this paper, we propose a novel hierarchical classification method that generalizes Support Vector Machine learning and that is based on discriminant functions that are structured in a way that mirrors the class hierarchy. Our method can work with arbitrary, not necessarily singly connected taxonomies and can deal with taskspecific loss functions. All parameters are learned jointly by optimizing a common objective function corresponding to a regularized upper bound on the empirical loss. We present experimental results on the WIPOalpha patent collection to show the competitiveness of our approach.
The analysis of decomposition methods for support vector machines
 IEEE Transactions on Neural Networks
, 1999
"... Abstract. The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for boundconstrained SVM formulations we demonstrate that the w ..."
Abstract

Cited by 108 (21 self)
 Add to MetaCart
Abstract. The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for boundconstrained SVM formulations we demonstrate that the working set selection is not a trivial task. Then from the experimental analysis we propose a simple selection of the working set which leads to faster convergences for difficult cases. Numerical experiments on different types of problems are conducted to demonstrate the viability of the proposed method.
Interiorpoint methods for nonconvex nonlinear programming: Filter methods and merit functions
 Computational Optimization and Applications
, 2002
"... Abstract. In this paper, we present global and local convergence results for an interiorpoint method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an ℓ1 penalty approach to relax all constraints, to provide regularization, and to bound ..."
Abstract

Cited by 84 (7 self)
 Add to MetaCart
Abstract. In this paper, we present global and local convergence results for an interiorpoint method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an ℓ1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’s strictly feasible interiorpoint method [12]. The global convergence of the algorithm is proved under mild assumptions, and local analysis shows that it converges Qquadratically for a large class of problems. The proposed approach is the first to simultaneously have all of the following properties while solving a general nonconvex nonlinear programming problem: (1) the convergence analysis does not assume boundedness of dual iterates, (2) local convergence does not require the Linear Independence Constraint Qualification, (3) the solution of the penalty problem is shown to locally converge to optima that may not satisfy the KarushKuhnTucker conditions, and (4) the algorithm is applicable to mathematical programs with equilibrium constraints. Numerical testing on a set of general nonlinear programming problems, including degenerate problems and infeasible problems, confirm the theoretical results. We also provide comparisons to a highlyefficient nonlinear solver and thoroughly analyze the effects of enforcing theoretical convergence guarantees on the computational performance of the algorithm. 1.