Results 1  10
of
269
Bundle adjustment – a modern synthesis
 Vision Algorithms: Theory and Practice, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 383 (10 self)
 Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
Randomwalk computation of similarities between nodes of a graph, with application to collaborative recommendation
 IEEE Transactions on Knowledge and Data Engineering
, 2006
"... Abstract—This work presents a new perspective on characterizing the similarity between elements of a database or, more generally, nodes of a weighted and undirected graph. It is based on a Markovchain model of random walk through the database. More precisely, we compute quantities (the average comm ..."
Abstract

Cited by 113 (15 self)
 Add to MetaCart
Abstract—This work presents a new perspective on characterizing the similarity between elements of a database or, more generally, nodes of a weighted and undirected graph. It is based on a Markovchain model of random walk through the database. More precisely, we compute quantities (the average commute time, the pseudoinverse of the Laplacian matrix of the graph, etc.) that provide similarities between any pair of nodes, having the nice property of increasing when the number of paths connecting those elements increases and when the “length ” of paths decreases. It turns out that the square root of the average commute time is a Euclidean distance and that the pseudoinverse of the Laplacian matrix is a kernel matrix (its elements are inner products closely related to commute times). A principal component analysis (PCA) of the graph is introduced for computing the subspace projection of the node vectors in a manner that preserves as much variance as possible in terms of the Euclidean commutetime distance. This graph PCA provides a nice interpretation to the “Fiedler vector, ” widely used for graph partitioning. The model is evaluated on a collaborativerecommendation task where suggestions are made about which movies people should watch based upon what they watched in the past. Experimental results on the MovieLens database show that the Laplacianbased similarities perform well in comparison with other methods. The model, which nicely fits into the socalled “statistical relational learning ” framework, could also be used to compute document or word similarities, and, more generally, it could be applied to machinelearning and patternrecognition tasks involving a relational database. Index Terms—Graph analysis, graph and database mining, collaborative recommendation, graph kernels, spectral clustering, Fiedler vector, proximity measures, statistical relational learning. 1
Constraint Preconditioning for Indefinite Linear Systems
 SIAM J. Matrix Anal. Appl
, 2000
"... . The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and ..."
Abstract

Cited by 73 (10 self)
 Add to MetaCart
. The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and form of the eigenvectors of the preconditioned matrix and its minimum polynomial are given. The consequences of these results are considered for a variety of Krylov subspace methods. Numerical experiments validate these conclusions. Key words. preconditioning, indenite matrices, Krylov subspace methods AMS subject classications. 65F10, 65F15, 65F50 1. Introduction. In this paper, we are concerned with investigating a new class of preconditioners for indenite systems of linear equations of a sort which arise in constrained optimization as well as in leastsquares, saddlepoint and Stokes problems. We attempt to solve the indenite linear system A B T B 0  {z } A x 1 x...
An augmented Lagrangianbased approach to the Oseen problem
 SIAM J. Sci. Comput
, 2006
"... Abstract. We describe an effective solver for the discrete Oseen problem based on an augmented Lagrangian formulation of the corresponding saddle point system. The proposed method is a block triangular preconditioner used with a Krylov subspace iteration like BiCGStab. The crucial ingredient is a no ..."
Abstract

Cited by 52 (23 self)
 Add to MetaCart
Abstract. We describe an effective solver for the discrete Oseen problem based on an augmented Lagrangian formulation of the corresponding saddle point system. The proposed method is a block triangular preconditioner used with a Krylov subspace iteration like BiCGStab. The crucial ingredient is a novel multigrid approach for the (1,1) block, which extends a technique introduced by Schöberl for elasticity problems to nonsymmetric problems. Our analysis indicates that this approach results in fast convergence, independent of the mesh size and largely insensitive to the viscosity. We present experimental evidence for both isoP2P0 and isoP2P1 finite elements in support of our conclusions. We also show results of a comparison with two stateoftheart preconditioners, showing the competitiveness of our approach. Key words. Navier–Stokes equations, finite element, iterative methods, multigrid, preconditioning AMS subject classifications. 65F10, 65N22, 65F50 DOI. 10.1137/050646421 1. Introduction. We consider the numerical solution of the steady Navier– Stokes equations governing the flow of a Newtonian, incompressible viscous fluid. Let Ω ⊂ R d (d =2,3) be a bounded, connected domain with a piecewise smooth
Parameter Estimation for Probabilistic FiniteState Transducers
 Proc. of the Annual Meeting of the Association for Computational Linguistics
, 2002
"... Weighted finitestate transducers suffer from the lack of a training algorithm. Training is even harder for transducers that have been assembled via finitestate operations such as composition, minimization, union, concatenation, and closure, as this yields tricky parameter tying. We formulate a "pa ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
Weighted finitestate transducers suffer from the lack of a training algorithm. Training is even harder for transducers that have been assembled via finitestate operations such as composition, minimization, union, concatenation, and closure, as this yields tricky parameter tying. We formulate a "parameterized FST" paradigm and give training algorithms for it, including a general bookkeeping trick ("expectation semirings") that cleanly and efficiently computes expectations and gradients.
Fast slant stack: A notion of Radon transform for data in a Cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible
 SIAM J. Sci. Comput
, 2001
"... Abstract. We define a notion of Radon Transform for data in an n by n grid. It is based on summation along lines of absolute slope less than 1 (as a function either of x or of y), with values at nonCartesian locations defined using trigonometric interpolation on a zeropadded grid. The definition i ..."
Abstract

Cited by 48 (11 self)
 Add to MetaCart
Abstract. We define a notion of Radon Transform for data in an n by n grid. It is based on summation along lines of absolute slope less than 1 (as a function either of x or of y), with values at nonCartesian locations defined using trigonometric interpolation on a zeropadded grid. The definition is geometrically faithful: the lines exhibit no ‘wraparound effects’. For a special set of lines equispaced in slope (rather than angle), we describe an exact algorithm which uses O(N log N) flops, where N = n2 is the number of pixels. This relies on a discrete projectionslice theorem relating this Radon transform and what we call the Pseudopolar Fourier transform. The Pseudopolar FT evaluates the 2D Fourier transform on a nonCartesian pointset, which we call the pseudopolar grid. Fast Pseudopolar FT – the process of rapid exact evaluation of the 2D Fourier transform at these nonCartesian grid points – is possible using chirpZ transforms. This Radon transform is onetoone and hence invertible on its range; it is rapidly invertible to any degree of desired accuracy using a preconditioned conjugate gradient solver. Empirically, the numerical conditioning is superb; the singular value spread of the preconditioned Radon transform turns out numerically to be less than 10%, and three iterations of the conjugate gradient solver typically suffice for 6 digit accuracy. We also describe a 3D version of the transform.
Recent computational developments in Krylov subspace methods for linear systems
 NUMER. LINEAR ALGEBRA APPL
, 2007
"... Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are metho ..."
Abstract

Cited by 48 (12 self)
 Add to MetaCart
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and those depending on one or more parameters.
Theory of inexact Krylov subspace methods and applications to scientific computing
, 2002
"... Abstract. We provide a general frameworkfor the understanding of inexact Krylov subspace methods for the solution of symmetric and nonsymmetric linear systems of equations, as well as for certain eigenvalue calculations. This frameworkallows us to explain the empirical results reported in a series o ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
Abstract. We provide a general frameworkfor the understanding of inexact Krylov subspace methods for the solution of symmetric and nonsymmetric linear systems of equations, as well as for certain eigenvalue calculations. This frameworkallows us to explain the empirical results reported in a series of CERFACS technical reports by Bouras, Frayssé, and Giraud in 2000. Furthermore, assuming exact arithmetic, our analysis can be used to produce computable criteria to bound the inexactness of the matrixvector multiplication in such a way as to maintain the convergence of the Krylov subspace method. The theory developed is applied to several problems including the solution of Schur complement systems, linear systems which depend on a parameter, and eigenvalue problems. Numerical experiments for some of these scientific applications are reported.