Results 1  10
of
76
Markov chains for exploring posterior distributions
 Annals of Statistics
, 1994
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 753 (6 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Bayesian phylogenetic inference via Markov chain Monte Carlo methods
 Biometrics
, 1999
"... SUMMARY. We derive a Markov chain to sample from the posterior distribution for a phylogenetic tree given sequence information from the corresponding set of organisms, a stochastic model for these data, and a prior distribution on the space of trees. A transformation of the tree into a canonical cop ..."
Abstract

Cited by 86 (3 self)
 Add to MetaCart
SUMMARY. We derive a Markov chain to sample from the posterior distribution for a phylogenetic tree given sequence information from the corresponding set of organisms, a stochastic model for these data, and a prior distribution on the space of trees. A transformation of the tree into a canonical cophenetic matrix form suggests a simple and effective proposal distribution for selecting candidate trees close to the current tree in the chain. We illustrate the algorithm with restriction site data on 9 plant species, then extend to DNA sequences from 32 species of fish. The algorithm mixes well in both examples from random starting trees, generating reproducible estimates and credible sets for the path of evolution.
Honest Exploration of Intractable Probability Distributions Via Markov Chain Monte Carlo
 STATISTICAL SCIENCE
, 2001
"... Two important questions that must be answered whenever a Markov chain Monte Carlo (MCMC) algorithm is used are (Q1) What is an appropriate burnin? and (Q2) How long should the sampling continue after burnin? Developing rigorous answers to these questions presently requires a detailed study of the ..."
Abstract

Cited by 68 (18 self)
 Add to MetaCart
Two important questions that must be answered whenever a Markov chain Monte Carlo (MCMC) algorithm is used are (Q1) What is an appropriate burnin? and (Q2) How long should the sampling continue after burnin? Developing rigorous answers to these questions presently requires a detailed study of the convergence properties of the underlying Markov chain. Consequently, in most practical applications of MCMC, exact answers to (Q1) and (Q2) are not sought. The goal of this paper is to demystify the analysis that leads to honest answers to (Q1) and (Q2). The authors hope that this article will serve as a bridge between those developing Markov chain theory and practitioners using MCMC to solve practical problems. The ability to formally address (Q1) and (Q2) comes from establishing a drift condition and an associated minorization condition, which together imply that the underlying Markov chain is geometrically ergodic. In this paper, we explain exactly what drift and minorization are as well as how and why these conditions can be used to form rigorous answers to (Q1) and (Q2). The basic ideas are as follows. The results of Rosenthal (1995) and Roberts and Tweedie (1999) allow one to use drift and minorization conditions to construct a formula giving an analytic upper bound on the distance to stationarity. A rigorous answer to (Q1) can be calculated using this formula. The desired characteristics of the target distribution are typically estimated using ergodic averages. Geometric ergodicity of the underlying Markov chain implies that there are central limit theorems available for ergodic averages (Chan and Geyer 1994). The regenerative simulation technique (Mykland, Tierney and Yu 1995, Robert 1995) can be used to get a consistent estimate of the variance of the asymptotic nor...
Parameter Expansion for Data Augmentation
 Journal of the American Statistical Association
, 1999
"... Viewing the observed data of a statistical model as incomplete and augmenting its missing parts are useful for clarifying concepts and central to the invention of two wellknown statistical algorithms: expectationmaximization (EM) and data augmentation. Recently, Liu, Rubin, and Wu (1998) demonstra ..."
Abstract

Cited by 65 (2 self)
 Add to MetaCart
Viewing the observed data of a statistical model as incomplete and augmenting its missing parts are useful for clarifying concepts and central to the invention of two wellknown statistical algorithms: expectationmaximization (EM) and data augmentation. Recently, Liu, Rubin, and Wu (1998) demonstrate that expanding the parameter space along with augmenting the missing data is useful for accelerating iterative computation in an EM algorithm. The main purpose of this article is to rigorously define a parameter expanded data augmentation (PXDA) algorithm and to study its theoretical properties. The PXDA is a special way of using auxiliary variables to accelerate Gibbs sampling algorithms and is closely related to reparameterization techniques. Theoretical results concerning the convergence rate of the PXDA algorithm and the choice of prior for the expansion parameter are obtained. In order to understand the role of the expansion parameter, we establish a new theory for iterative condi...
On the Convergence of Monte Carlo Maximum Likelihood Calculations
 Journal of the Royal Statistical Society B
, 1992
"... Monte Carlo maximum likelihood for normalized families of distributions (Geyer and Thompson, 1992) can be used for an extremely broad class of models. Given any family f h ` : ` 2 \Theta g of nonnegative integrable functions, maximum likelihood estimates in the family obtained by normalizing the the ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
Monte Carlo maximum likelihood for normalized families of distributions (Geyer and Thompson, 1992) can be used for an extremely broad class of models. Given any family f h ` : ` 2 \Theta g of nonnegative integrable functions, maximum likelihood estimates in the family obtained by normalizing the the functions to integrate to one can be approximated by Monte Carlo, the only regularity conditions being a compactification of the parameter space such that the the evaluation maps ` 7! h ` (x) remain continuous. Then with probability one the Monte Carlo approximant to the log likelihood hypoconverges to the exact log likelihood, its maximizer converges to the exact maximum likelihood estimate, approximations to profile likelihoods hypoconverge to the exact profile, and level sets of the approximate likelihood (support regions) converge to the exact sets (in Painlev'eKuratowski set convergence). The same results hold when there are missing data (Thompson and Guo, 1991, Gelfand and Carlin, 19...
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Loglinear Models
 Biometrika
, 1996
"... this paper, we will only consider undirected graphical models. For details of Bayesian model selection for directed graphical models see Madigan et al (1995). An (undirected) graphical model is determined by a set of conditional independence constraints of the form `fl 1 is independent of fl 2 condi ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
this paper, we will only consider undirected graphical models. For details of Bayesian model selection for directed graphical models see Madigan et al (1995). An (undirected) graphical model is determined by a set of conditional independence constraints of the form `fl 1 is independent of fl 2 conditional on all other fl i 2 C'. Graphical models are so called because they can each be represented as a graph with vertex set C and an edge between each pair fl 1 and fl 2 unless fl 1 and fl 2 are conditionally independent as described above. Darroch, Lauritzen and Speed (1980) show that each graphical loglinear model is hierarchical, with generators given by the cliques (complete subgraphs) of the graph. The total number of possible graphical models is clearly given by 2 (
Blocking Gibbs Sampling in Very Large Probabilistic Expert Systems
 Internat. J. Human–Computer Studies
, 1995
"... We introduce a methodology for performing approximate computations in very complex probabilistic systems (e.g. huge pedigrees). Our approach, called blocking Gibbs, combines exact local computations with Gibbs sampling in a way that complements the strengths of both. The methodology is illustrate ..."
Abstract

Cited by 46 (0 self)
 Add to MetaCart
We introduce a methodology for performing approximate computations in very complex probabilistic systems (e.g. huge pedigrees). Our approach, called blocking Gibbs, combines exact local computations with Gibbs sampling in a way that complements the strengths of both. The methodology is illustrated on a realworld problem involving a heavily inbred pedigree containing 20;000 individuals. We present results showing that blockingGibbs sampling converges much faster than plain Gibbs sampling for very complex problems.
FixedWidth Output Analysis for Markov Chain Monte Carlo
, 2005
"... Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate features of a target distribution via ergodic averages. A fundamental question is when should sampling stop? That is, when are the ergodic averages good estimates of the desired quantities? We consider a metho ..."
Abstract

Cited by 43 (16 self)
 Add to MetaCart
Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate features of a target distribution via ergodic averages. A fundamental question is when should sampling stop? That is, when are the ergodic averages good estimates of the desired quantities? We consider a method that stops the simulation when the width of a confidence interval based on an ergodic average is less than a userspecified value. Hence calculating a Monte Carlo standard error is a critical step in assessing the simulation output. We consider the regenerative simulation and batch means methods of estimating the variance of the asymptotic normal distribution. We give sufficient conditions for the strong consistency of both methods and investigate their finite sample properties in a variety of examples.
On the Markov chain central limit theorem. Probability Surveys
, 2004
"... The goal of this mainly expository paper is to describe conditions which guarantee a central limit theorem for functionals of general state space Markov chains with a view towards Markov chain Monte Carlo settings. Thus the focus is on the connections between drift and mixing conditions and their im ..."
Abstract

Cited by 40 (9 self)
 Add to MetaCart
The goal of this mainly expository paper is to describe conditions which guarantee a central limit theorem for functionals of general state space Markov chains with a view towards Markov chain Monte Carlo settings. Thus the focus is on the connections between drift and mixing conditions and their implications. In particular, we consider three commonly cited central limit theorems and discuss their relationship to classical results for mixing processes. Several motivating examples are given which range from toy onedimensional settings to complicated settings encountered in Markov chain Monte Carlo. 1
Exact Sampling From AntiMonotone Systems
 Statistica Neerlandica
, 1998
"... A new approach to Markov chain Monte Carlo simulation was recently proposed by Propp and Wilson. This approach, unlike traditional ones, yields samples which have exactly the desired distribution. The ProppWilson algorithm requires this distribution to have a certain structure called monotonicity. ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
A new approach to Markov chain Monte Carlo simulation was recently proposed by Propp and Wilson. This approach, unlike traditional ones, yields samples which have exactly the desired distribution. The ProppWilson algorithm requires this distribution to have a certain structure called monotonicity. In this paper an idea of Kendall is applied to show how the algorithm can be extended to the case where monotonicity is replaced by antimonotonicity. As illustrating examples, simulations of the hardcore model and the randomcluster model are presented.