Results 1 
6 of
6
Minimum Cuts and Shortest NonSeparating Cycles via Homology Covers
 SYMPOSIUM ON DISCRETE ALGORITHMS
, 2011
"... Let G be a directed graph with weighted edges, embedded on a surface of genus g with b boundaries. We describe an algorithm to compute the shortest directed cycle in G in any given � 2homology class in 2 O(g+b) n log n time; this problem is NPhard even for undirected graphs. We also present two ap ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Let G be a directed graph with weighted edges, embedded on a surface of genus g with b boundaries. We describe an algorithm to compute the shortest directed cycle in G in any given � 2homology class in 2 O(g+b) n log n time; this problem is NPhard even for undirected graphs. We also present two applications of our algorithm. The first is an algorithm to compute the shortest nonseparating directed cycle in G in 2 O(g) n log n time, improving the recent algorithm of Cabello et al. [SOCG 2010] for all g = o(log n). The second is a combinatorial algorithm to compute minimum (s, t)cuts in undirected surface graphs in 2 O(g) n log n time, improving an algorithm of Chambers et al. [SOCG 2009] for all positive g. Unlike earlier algorithms for surface graphs that construct and search finite portions of the universal cover, our algorithms use another canonical covering space, called the Z 2homology cover.
Multiplesource shortest paths in embedded graphs
, 2012
"... Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Our result directly generalizes the O(n log n)time algorithm of Klein [Multiplesource shortest paths in planar graphs. In Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms, 2005] for multiplesource shortest paths in planar graphs. Intuitively, our preprocessing algorithm maintains a shortestpath tree as its source point moves continuously around the boundary of f. As an application of our algorithm, we describe algorithms to compute a shortest noncontractible or nonseparating cycle in embedded, undirected graphs in O(g² n log n) time.
Shortest nontrivial cycles in directed surface graphs
 In Proc. 27th Ann. Symp. Comput. Geom
, 2011
"... Let G be a directed graph embedded on a surface of genus g. We describe an algorithm to compute the shortest nonseparating cycle in G in O(g 2 n log n) time, exactly matching the fastest algorithm known for undirected graphs. We also describe an algorithm to compute the shortest noncontractible cy ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Let G be a directed graph embedded on a surface of genus g. We describe an algorithm to compute the shortest nonseparating cycle in G in O(g 2 n log n) time, exactly matching the fastest algorithm known for undirected graphs. We also describe an algorithm to compute the shortest noncontractible cycle in G in g O(g) n log n time, matching the fastest algorithm for undirected graphs of constant genus.
Computing Replacement Paths in Surface Embedded Graphs
, 2011
"... Let s and t be vertices in a directed graph G with nonnegative edge weights. The replacement paths problem asks us to compute, for each edge e in G, the length of the shortest path from s to t that does not traverse e. We describe an algorithm that solves the replacement paths problem for directed ..."
Abstract
 Add to MetaCart
Let s and t be vertices in a directed graph G with nonnegative edge weights. The replacement paths problem asks us to compute, for each edge e in G, the length of the shortest path from s to t that does not traverse e. We describe an algorithm that solves the replacement paths problem for directed graphs embedded on a surface of any genus g in O(gn log n) time, generalizing a recent O(n log n)time algorithm of WulffNilsen for planar graphs [SODA 2010].
Combinatorial Optimization of Cycles and Bases
 PROCEEDINGS OF SYMPOSIA IN APPLIED MATHEMATICS
"... We survey algorithms and hardness results for two important classes of topology optimization problems: computing minimumweight cycles in a given homotopy or homology class, and computing minimumweight cycle bases for the fundamental group or various homology groups. ..."
Abstract
 Add to MetaCart
We survey algorithms and hardness results for two important classes of topology optimization problems: computing minimumweight cycles in a given homotopy or homology class, and computing minimumweight cycle bases for the fundamental group or various homology groups.
MultipleSource Shortest Paths in Embedded Graphs ∗
, 2012
"... Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of ..."
Abstract
 Add to MetaCart
Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Our result directly generalizes the O(n log n)time algorithm of Klein [Multiplesource shortest paths in planar graphs. In Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms, 2005] for multiplesource shortest paths in planar graphs. Intuitively, our preprocessing algorithm maintains a shortestpath tree as its source point moves continuously around the boundary of f. As an application of our algorithm, we describe algorithms to compute a shortest noncontractible or nonseparating cycle in embedded, undirected graphs in O(g 2 n log n) time.