Results 11  20
of
928
Bayesian Landmark Learning for Mobile Robot Localization
, 1998
"... . To operate successfully in indoor environments, mobile robots must be able to localize themselves. Most current localization algorithms lack flexibility, autonomy, and often optimality, since they rely on a human to determine what aspects of the sensor data to use in localization (e.g., what landm ..."
Abstract

Cited by 112 (16 self)
 Add to MetaCart
. To operate successfully in indoor environments, mobile robots must be able to localize themselves. Most current localization algorithms lack flexibility, autonomy, and often optimality, since they rely on a human to determine what aspects of the sensor data to use in localization (e.g., what landmarks to use). This paper describes a learning algorithm, called BaLL, that enables mobile robots to learn what features/landmarks are best suited for localization, and also to train artificial neural networks for extracting them from the sensor data. A rigorous Bayesian analysis of probabilistic localization is presented, which produces a rational argument for evaluating features, for selecting them optimally, and for training the networks that approximate the optimal solution. In a systematic experimental study, BaLL outperforms two other recent approaches to mobile robot localization. Keywords: artificial neural networks, Bayesian analysis, feature extraction, landmarks, localization, mobi...
A nonparametric approach to pricing and hedging derivative securities via learning networks
 Journal of Finance
, 1994
"... http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncom ..."
Abstract

Cited by 104 (4 self)
 Add to MetaCart
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
Input/output hmms for sequence processing
 IEEE Transactions on Neural Networks
, 1996
"... We consider problems of sequence processing and propose a solution based on a discrete state model in order to represent past context. Weintroduce a recurrent connectionist architecture having a modular structure that associates a subnetwork to each state. The model has a statistical interpretation ..."
Abstract

Cited by 98 (12 self)
 Add to MetaCart
We consider problems of sequence processing and propose a solution based on a discrete state model in order to represent past context. Weintroduce a recurrent connectionist architecture having a modular structure that associates a subnetwork to each state. The model has a statistical interpretation we call Input/Output Hidden Markov Model (IOHMM). It can be trained by the EM or GEM algorithms, considering state trajectories as missing data, which decouples temporal credit assignment and actual parameter estimation. The model presents similarities to hidden Markov models (HMMs), but allows us to map input sequences to output sequences, using the same processing style as recurrent neural networks. IOHMMs are trained using a more discriminant learning paradigm than HMMs, while potentially taking advantage of the EM algorithm. We demonstrate that IOHMMs are well suited for solving grammatical inference problems on a benchmark problem. Experimental results are presented for the seven Tomita grammars, showing that these adaptive models can attain excellent generalization.
Large Sample Sieve Estimation of SemiNonparametric Models
 Handbook of Econometrics
, 2007
"... Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method o ..."
Abstract

Cited by 92 (17 self)
 Add to MetaCart
Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method of sieves provides one way to tackle such complexities by optimizing an empirical criterion function over a sequence of approximating parameter spaces, called sieves, which are significantly less complex than the original parameter space. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated econometric models. For example, it can simultaneously estimate the parametric and nonparametric components in seminonparametric models with or without constraints. It can easily incorporate prior information, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and nonnegativity. This chapter describes estimation of seminonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve Mestimates, pointwise normality of series estimates of regression functions, rootn asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite dimensional parameters. Examples are used to illustrate the general results.
NeuroAnimator: Fast Neural Network Emulation and Control of PhysicsBased Models
, 1998
"... Animation through the numerical simulation of physicsbased graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physicsbased models to produce desired animations usually entails formidable computational cost. This paper de ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
Animation through the numerical simulation of physicsbased graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physicsbased models to produce desired animations usually entails formidable computational cost. This paper demonstrates the possibility of replacing the numerical simulation and control of model dynamics with a dramatically more efficient alternative. In particular, we propose the NeuroAnimator, a novel approach to creating physically realistic animation that exploits neural networks. NeuroAnimators are automatically trained offline to emulate physical dynamics through the observation of physicsbased models in action. Depending on the model, its neural network emulator can yield physically realistic animation one or two orders of magnitude faster than conventional numerical simulation. Furthermore, by exploiting the network structure of the NeuroAnimator, we introduce a fast algorithm for learning controllers that enables either physicsbased models or their neural network emulators to synthesize motions satisfying prescribed animation goals. We demonstrate NeuroAnimators for passive and active (actuated) rigid body, articulated, and deformable physicsbased models.
Improving Regression Estimation: Averaging Methods for Variance Reduction with Extensions to General Convex Measure Optimization
, 1993
"... ..."
Confidence Estimation for Machine Translation
 IN M. ROLLINS (ED.), MENTAL IMAGERY
, 2004
"... ..."
On The Problem Of Local Minima In Backpropagation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1992
"... Supervised Learning in MultiLayered Neural Networks (MLNs) has been recently proposed through the wellknown Backpropagation algorithm. This is a gradient method which can get stuck in local minima, as simple examples can show. In this paper, some conditions on the network architecture and the lear ..."
Abstract

Cited by 72 (17 self)
 Add to MetaCart
Supervised Learning in MultiLayered Neural Networks (MLNs) has been recently proposed through the wellknown Backpropagation algorithm. This is a gradient method which can get stuck in local minima, as simple examples can show. In this paper, some conditions on the network architecture and the learning environment are proposed which ensure the convergence of the Backpropagation algorithm. It is proven in particular that the convergence holds if the classes are linearlyseparable. In this case, the experience gained in several experiments shows that MLNs exceed perceptrons in generalization to new examples. Index Terms MultiLayered Networks, learning environment, Backpropagation, pattern recognition, linearlyseparable classes. I. Introduction Supervised learning in MultiLayered Networks can be accomplished thanks to Backpropagation (BP ) ([19, 25, 31]). Its application to several different subjects [25], and, particularly, to pattern recognition ([3, 6, 8, 20, 27, 29]), has bee...
Spatial Transformations in the Parietal Cortex Using Basis Functions
, 1997
"... Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating ..."
Abstract

Cited by 71 (7 self)
 Add to MetaCart
Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating nonlinear functions that is computationally efficient and well suited for adaptive modification. In particular, the responses of single parietal neurons can be approximated by the product of a Gaussian function of retinal location and a sigmoid function of eye position, called a gain field. A large set of such functions forms a basis set that can be used to perform an arbitrary motor response through a direct projection. We compare this hypothesis with other approaches that are commonly used to model population codes, such as computational maps and vectorial representations. Neither of these alternatives can fully account for the responses of parietal neurons, and they are computationally less efficient for nonlinear transformations. Basis functions also have the advantage of not depending on any coordinate system or reference frame. As a consequence, the position of an object can be represented in multiple reference frames simultaneously, a property consistent with the behavior of hemineglect patients with lesions in the parietal cortex.
Regression Modeling in BackPropagation and Projection Pursuit Learning
, 1994
"... We studied and compared two types of connectionist learning methods for modelfree regression problems in this paper. One is the popular backpropagation learning (BPL) well known in the artificial neural networks literature; the other is the projection pursuit learning (PPL) emerged in recent years ..."
Abstract

Cited by 65 (1 self)
 Add to MetaCart
We studied and compared two types of connectionist learning methods for modelfree regression problems in this paper. One is the popular backpropagation learning (BPL) well known in the artificial neural networks literature; the other is the projection pursuit learning (PPL) emerged in recent years in the statistical estimation literature. Both the BPL and the PPL are based on projections of the data in directions determined from interconnection weights. However, unlike the use of fixed nonlinear activations (usually sigmoidal) for the hidden neurons in BPL, the PPL systematically approximates the unknown nonlinear activations. Moreover, the BPL estimates all the weights simultaneously at each iteration, while the PPL estimates the weights cyclically (neuronbyneuron and layerbylayer) at each iteration. Although the BPL and the PPL have comparable training speed when based on a GaussNewton optimization algorithm, the PPL proves more parsimonious in that the PPL requires a fewer hi...