Results 1  10
of
16
Mass problems and hyperarithmeticity
, 2006
"... A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let Pw be the lattice of we ..."
Abstract

Cited by 24 (16 self)
 Add to MetaCart
A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let Pw be the lattice of weak degrees of mass problems associated with nonempty Π 0 1 subsets of the Cantor space. The lattice Pw has been studied in previous publications. The purpose of this paper is to show that Pw partakes of hyperarithmeticity. We exhibit a family of specific, natural degrees in Pw which are indexed by the ordinal numbers less than ω CK 1 and which correspond to the hyperarithmetical hierarchy. Namely, for each α < ω CK 1 let hα be the weak degree of 0 (α) , the αth Turing jump of 0. If p is the weak degree of any mass problem P, let p ∗ be the weak degree
Definability in the Turing Degrees
 J. Symbolic Logic
, 1986
"... . Suppose that R is a countable relation on the Turing degrees. Then R can be defined in D, the Turing degrees with # T , by a first order formula with finitely many parameters. The parameters are built by means of a notion of forcing in which the conditions are essentially finite. The co ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
. Suppose that R is a countable relation on the Turing degrees. Then R can be defined in D, the Turing degrees with # T , by a first order formula with finitely many parameters. The parameters are built by means of a notion of forcing in which the conditions are essentially finite. The conditions in the forcing partial specify finite initial segments of the generic reals and impose a infinite constraint on further extensions. In section 3, this result is applied to show that any elementary function from D to D is an automorphism. Other applications are given toward the rigidity question for D. By observing that a single jump is all that is needed to meet the relevant dense sets, it is also shown that the recursively enumerable degrees can be defined from finitely many parameters in the structure consisting of the degrees below 0 # with # T . 1. Introduction Definability has provided the most fruitful approach to understanding the modeltheoretic structure ...
The theory of the degrees below 0
 J. London Math. Soc
, 1981
"... Degree theory, that is the study of the structure of the Turing degrees (or degrees of unsolvability) has been divided by Simpson [24; §5] into two parts—global and local. By the global theory he means the study of general structural properties of 3d— the degrees as a partially ordered set or uppers ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Degree theory, that is the study of the structure of the Turing degrees (or degrees of unsolvability) has been divided by Simpson [24; §5] into two parts—global and local. By the global theory he means the study of general structural properties of 3d— the degrees as a partially ordered set or uppersemilattice. The local theory concerns
Degree structures: Local and global investigations
 Bulletin of Symbolic Logic
"... $1. Introduction. The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead. ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
$1. Introduction. The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.
Natural Definability in Degree Structures
"... . A major focus of research in computability theory in recent years has involved denability issues in degree structures. There has been much success in getting general results by coding methods that translate rst or second order arithmetic into the structures. In this paper we concentrate on the ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
. A major focus of research in computability theory in recent years has involved denability issues in degree structures. There has been much success in getting general results by coding methods that translate rst or second order arithmetic into the structures. In this paper we concentrate on the issues of getting denitions of interesting, apparently external, relations on degrees that are ordertheoretically natural in the structures D and R of all the Turing degrees and of the r.e. Turing degrees, respectively. Of course, we have no formal denition of natural but we oer some guidelines, examples and suggestions for further research. 1. Introduction A major focus of research in computability theory in recent years has involved denability issues in degree structures. The basic question is, which interesting apparently external relations on degrees can actually be dened in the structures themselves, that is, in the rst order language with the single fundamental relation...
Conjectures and Questions from Gerald Sacks’s Degrees of Unsolvability
 Archive for Mathematical Logic
, 1993
"... We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, particular ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, particularly recursion theory, over the past thirty years through his research, writing and teaching. Here, I would like to concentrate on just one instance of that influence that I feel has been of special significance to the study of the degrees of unsolvability in general and on my own work in particular the conjectures and questions posed at the end of the two editions of Sacks's first book, the classic monograph Degrees of Unsolvability (Annals
Global Properties of the Turing Degrees and the Turing Jump
"... We present a summary of the lectures delivered to the Institute for Mathematical Sciences, Singapore, during the 2005 Summer School in Mathematical Logic. The lectures covered topics on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We present a summary of the lectures delivered to the Institute for Mathematical Sciences, Singapore, during the 2005 Summer School in Mathematical Logic. The lectures covered topics on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of the Turing jump within D.
The ∀∃ theory of D(≤, ∨, ′ ) is undecidable
 In Proceedings of Logic Colloquium
, 2003
"... We prove that the two quantifier theory of the Turing degrees with order, join and jump is undecidable. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We prove that the two quantifier theory of the Turing degrees with order, join and jump is undecidable.
2004], The 89theory of R( ; _; ^) is undecidable
 Trans. Am. Math. Soc
"... Abstract The three quantifier theory of (R; ^T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman [1998]. The two quantifier theory includes the lattice embedding problem and its decidability is a long standing open question. A negative s ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract The three quantifier theory of (R; ^T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman [1998]. The two quantifier theory includes the lattice embedding problem and its decidability is a long standing open question. A negative solution to this problem seems out of reach of the standard methods of interpretation of theories because the language is relational. We prove the undecidability of a fragment of the theory of R that lies between the two and three quantifier theories with ^T but includes function symbols.
The ∀∃theory of R(≤, ∨, ∧) is undecidable
 Trans. Amer. Math. Soc
, 2004
"... Abstract. The three quantifier theory of (R, ≤T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman (1998). The two quantifier theory includes the lattice embedding problem and its decidability is a longstanding open question. A negative ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. The three quantifier theory of (R, ≤T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman (1998). The two quantifier theory includes the lattice embedding problem and its decidability is a longstanding open question. A negative solution to this problem seems out of reach of the standard methods of interpretation of theories because the language is relational. We prove the undecidability of a fragment of the theory of R that lies between the two and three quantifier theories with ≤T but includes function symbols. Theorem. The two quantifier theory of (R, ≤, ∨, ∧), the r.e. degrees with Turing reducibility, supremum and infimum (taken to be any total function extending the infimum relation on R) is undecidable. The same result holds for various lattices of ideals of R which are natural extensions of R preserving join and infimum when it exits. 1.