Results 11  20
of
26
Computability and Incomputability
"... The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal cr ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal credit. This is incorrect. It was Turing alone who achieved the characterization, in the opinion of Gödel. We also explore Turing’s oracle machine and its analogous properties in analysis. Keywords: Turing amachine, computability, ChurchTuring Thesis, Kurt Gödel, Alan Turing, Turing omachine, computable approximations,
A General Framework for Priority Arguments
 The Bulletin of Symbolic Logic
, 1995
"... this paper. ..."
The ∀∃theory of R(≤, ∨, ∧) is undecidable
 Trans. Amer. Math. Soc
, 2004
"... Abstract. The three quantifier theory of (R, ≤T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman (1998). The two quantifier theory includes the lattice embedding problem and its decidability is a longstanding open question. A negative ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. The three quantifier theory of (R, ≤T), the recursively enumerable degrees under Turing reducibility, was proven undecidable by Lempp, Nies and Slaman (1998). The two quantifier theory includes the lattice embedding problem and its decidability is a longstanding open question. A negative solution to this problem seems out of reach of the standard methods of interpretation of theories because the language is relational. We prove the undecidability of a fragment of the theory of R that lies between the two and three quantifier theories with ≤T but includes function symbols. Theorem. The two quantifier theory of (R, ≤, ∨, ∧), the r.e. degrees with Turing reducibility, supremum and infimum (taken to be any total function extending the infimum relation on R) is undecidable. The same result holds for various lattices of ideals of R which are natural extensions of R preserving join and infimum when it exits. 1.
The complexity of orbits of computably enumerable sets
 BULLETIN OF SYMBOLIC LOGIC
, 2008
"... The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
Computational Processes, Observers and Turing Incompleteness
"... We propose a formal definition of Wolfram’s notion of computational process based on iterated transducers together with a weak observer, a model of computation that captures some aspects of physicslike computation. These processes admit a natural classification into decidable, intermediate and comp ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We propose a formal definition of Wolfram’s notion of computational process based on iterated transducers together with a weak observer, a model of computation that captures some aspects of physicslike computation. These processes admit a natural classification into decidable, intermediate and complete, where intermediate processes correspond to recursively enumerable sets of intermediate degree in the classical setting. It is shown that a standard finite injury priority argument will not suffice to establish the existence of an intermediate computational process.
Low upper bounds of ideals
"... Abstract. We show that there is a low Tupper bound for the class of Ktrivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in ∆0 2 Tdegrees for which there is a low Tupper bound. 1. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. We show that there is a low Tupper bound for the class of Ktrivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in ∆0 2 Tdegrees for which there is a low Tupper bound. 1.
EXACT PAIRS FOR THE IDEAL OF THE KTRIVIAL SEQUENCES IN THE TURING DEGREES
, 2012
"... The Ktrivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [MN06, Question 4.2] and later i ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The Ktrivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [MN06, Question 4.2] and later in [Nie09, Problem 5.5.8]. We give a negative answer to this question. In fact, we show the following stronger statement in the c.e. degrees. There exists a Ktrivial degree d such that for all degrees a, b which are not Ktrivial and a> d, b> d there exists a degree v which is not Ktrivial and a> v, b> v. This work sheds light to the question of the definability of the Ktrivial degrees in the c.e. degrees.
On the Quantitative Structure of ...
, 2000
"... We analyze the quantitative structure of 0 2 . Among other things, we prove that a set is Turing complete if and only if its lower cone is nonnegligible, and that the sets of r.e.degree form a small subset of 0 2 . Mathematical Subject Classification: 03D15, 03D30, 28E15 Keywords: Comput ..."
Abstract
 Add to MetaCart
We analyze the quantitative structure of 0 2 . Among other things, we prove that a set is Turing complete if and only if its lower cone is nonnegligible, and that the sets of r.e.degree form a small subset of 0 2 . Mathematical Subject Classification: 03D15, 03D30, 28E15 Keywords: Computable measure theory, Turing degrees, completeness. 1 Introduction We study an eective measure theory suited for the study of 0 2 , the second level of the arithmetical hierarchy (alternatively, the sets computable relative to the halting problem K). This work may be seen as part of the constructivist tradition in mathematics as documented in [6]. The framework for eectivizing measure theory that we employ uses martingales. Martingales were rst applied to the study of random sequences by J. Ville [22]. Recursive martingales were studied in Schnorr [19], and became popular in complexity theory in more recent years through the work of Lutz [14, 15]. Lutz Research supported by a Ma...
Lattice initial segments of the hyperdegrees
, 2009
"... We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, Dh. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable, locally finite lattice) is isomorph ..."
Abstract
 Add to MetaCart
We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, Dh. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable, locally finite lattice) is isomorphic to an initial segment of Dh. Corollaries include the decidability of the two quantifier theory of Dh and the undecidability of its three quantifier theory. The key tool in the proof is a new lattice representation theorem that provides a notion of forcing for which we can prove a version of the fusion lemma in the hyperarithmetic setting and so the preservation of! CK 1. Somewhat surprisingly, the set theoretic analog of this forcing does not preserve!1. On the other hand, we construct countable lattices that are not isomorphic to any initial segment of Dh.
RESTRICTED JUMP INTERPOLATION IN THE D.C.E. DEGREES
, 2009
"... It is shown that for any 2computably enumerable Turing degree l, any computably enumerable degree a, and any Turing degree s, if l ′ = 0 ′, l < a, s ≥ 0 ′ , and s is c.e. in a, then there is a 2computably enumerable degree x with the following properties: (1) l < x < a, and (2) x ′ = s. 1 ..."
Abstract
 Add to MetaCart
It is shown that for any 2computably enumerable Turing degree l, any computably enumerable degree a, and any Turing degree s, if l ′ = 0 ′, l < a, s ≥ 0 ′ , and s is c.e. in a, then there is a 2computably enumerable degree x with the following properties: (1) l < x < a, and (2) x ′ = s. 1