Results 11  20
of
48
The history and concept of computability
 in Handbook of Computability Theory
, 1999
"... We consider the informal concept of a “computable ” or “effectively calculable” function on natural numbers and two of the formalisms used to define it, computability” and “(general) recursiveness. ” We consider their origin, exact technical definition, concepts, history, how they became fixed in th ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We consider the informal concept of a “computable ” or “effectively calculable” function on natural numbers and two of the formalisms used to define it, computability” and “(general) recursiveness. ” We consider their origin, exact technical definition, concepts, history, how they became fixed in their present roles, and how
Computability and Incomputability
"... The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal cr ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal credit. This is incorrect. It was Turing alone who achieved the characterization, in the opinion of Gödel. We also explore Turing’s oracle machine and its analogous properties in analysis. Keywords: Turing amachine, computability, ChurchTuring Thesis, Kurt Gödel, Alan Turing, Turing omachine, computable approximations,
Global Properties of the Turing Degrees and the Turing Jump
"... We present a summary of the lectures delivered to the Institute for Mathematical Sciences, Singapore, during the 2005 Summer School in Mathematical Logic. The lectures covered topics on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We present a summary of the lectures delivered to the Institute for Mathematical Sciences, Singapore, during the 2005 Summer School in Mathematical Logic. The lectures covered topics on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of the Turing jump within D.
On notions of computability theoretic reduction between Π12 principles
, 2015
"... Several notions of computability theoretic reducibility between Π12 principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each n> 3, there is ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
Several notions of computability theoretic reducibility between Π12 principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each n> 3, there is an instance of RTn2 all of whose solutions have PA degree over ∅(n−2), and use this to show that König’s Lemma lies strictly between RT22 and RT 3 2 under one of these notions. We also answer two questions raised by Dorais, Dzhafarov, Hirst, Mileti, and Shafer [ta] on comparing versions of Ramsey’s Theorem and of the Thin Set Theorem with the same exponent but different numbers of colors. Still on the topic of the effect of the number of colors on the computable aspects of Ramsey theoretic properties, we show that for each m> 2, there is an (m + 1)coloring c of N such
A General Framework for Priority Arguments
 THE BULLETIN OF SYMBOLIC LOGIC
, 1995
"... ..."
(Show Context)
Slicing the Truth: On the Computability Theoretic and Reverse Mathematical Analysis of . . .
 INSTITUTE FOR MATHEMATICAL SCIENCES, NATIONAL UNIVERSITY OF SINGAPORE, WORLD SCIENTIFIC
"... In this expository article, we discuss two closely related approaches to studying the relative strength of mathematical principles: computable mathematics and reverse mathematics. Drawing our examples from combinatorics and model theory, we explore a variety of phenomena and techniques in these area ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
In this expository article, we discuss two closely related approaches to studying the relative strength of mathematical principles: computable mathematics and reverse mathematics. Drawing our examples from combinatorics and model theory, we explore a variety of phenomena and techniques in these areas. We begin with variations on König’s Lemma, and give an introduction to reverse mathematics and related parts of computability theory. We then focus on Ramsey’s Theorem as a case study in the computability theoretic and reverse mathematical analysis of combinatorial principles. We study Ramsey’s Theorem for Pairs (RT22) in detail, focusing on fundamental tools such as stability, cohesiveness, and Mathias forcing; and on combinatorial and model theoretic consequences of RT22. We also discuss the important theme of conservativity results. In the final section, we explore several topics that reveal various aspects of computable mathematics and reverse mathematics. An appendix contains a proof of Liu’s recent result that RT22 does not imply Weak König’s Lemma. There are exercises and open questions throughout the article.
The complexity of orbits of computably enumerable sets
 BULLETIN OF SYMBOLIC LOGIC
, 2008
"... The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
Computational Processes, Observers and Turing Incompleteness
"... We propose a formal definition of Wolfram’s notion of computational process based on iterated transducers together with a weak observer, a model of computation that captures some aspects of physicslike computation. These processes admit a natural classification into decidable, intermediate and comp ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
We propose a formal definition of Wolfram’s notion of computational process based on iterated transducers together with a weak observer, a model of computation that captures some aspects of physicslike computation. These processes admit a natural classification into decidable, intermediate and complete, where intermediate processes correspond to recursively enumerable sets of intermediate degree in the classical setting. It is shown that a standard finite injury priority argument will not suffice to establish the existence of an intermediate computational process.
EXACT PAIRS FOR THE IDEAL OF THE KTRIVIAL SEQUENCES IN THE TURING DEGREES
, 2012
"... The Ktrivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [MN06, Question 4.2] and later i ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
The Ktrivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [MN06, Question 4.2] and later in [Nie09, Problem 5.5.8]. We give a negative answer to this question. In fact, we show the following stronger statement in the c.e. degrees. There exists a Ktrivial degree d such that for all degrees a, b which are not Ktrivial and a> d, b> d there exists a degree v which is not Ktrivial and a> v, b> v. This work sheds light to the question of the definability of the Ktrivial degrees in the c.e. degrees.
Low upper bounds of ideals
"... Abstract. We show that there is a low Tupper bound for the class of Ktrivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in ∆0 2 Tdegrees for which there is a low Tupper bound. 1. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We show that there is a low Tupper bound for the class of Ktrivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in ∆0 2 Tdegrees for which there is a low Tupper bound. 1.