Results 1 
4 of
4
Pure type systems formalized
 Proceedings of the International Conference on Typed Lambda Calculi and Applications
, 1993
"... ..."
Constructions, Inductive Types and Strong Normalization
, 1993
"... This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notio ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notion of model, CCstructures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to nonalgebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a nontrivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the...
The SemiFull Closure of Pure Type Systems
 Proceedings of MFCS’98, volume 1450 of Lecture Notes in Computer Science
, 1998
"... We show that every functional Pure Type System may be extended to a semifull Pure Type System. Moreover, the extension is conservative and preserves weak normalization. Based on these results, we give a new, conceptually simple typechecking algorithm for functional Pure Type Systems. 1 ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We show that every functional Pure Type System may be extended to a semifull Pure Type System. Moreover, the extension is conservative and preserves weak normalization. Based on these results, we give a new, conceptually simple typechecking algorithm for functional Pure Type Systems. 1
Typechecking Injective Pure Type Systems
, 1993
"... Injective Pure Type Systems form a large class of Pure Type Systems for which one can compute by purely syntactic means two sorts elmt(\GammajM ) and sort(\GammajM ), where \Gamma is a pseudocontext and M is a pseudoterm, and such that for every sort s, \Gamma ` M : A \Gamma ` A : s ) elmt(\Gamm ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Injective Pure Type Systems form a large class of Pure Type Systems for which one can compute by purely syntactic means two sorts elmt(\GammajM ) and sort(\GammajM ), where \Gamma is a pseudocontext and M is a pseudoterm, and such that for every sort s, \Gamma ` M : A \Gamma ` A : s ) elmt(\GammajM ) = s \Gamma ` M : s ) sort(\GammajM ) = s By eliminating the problematic clause in the (abstraction) rule in favor of constraints over elmt(:j:) and sort(:j:), we provide a sound and complete typechecking algorithm for injective Pure Type Systems. In addition, we prove Expansion Postponement for a variant of injective Pure Type Systems where the problematic clause in the (abstraction) rule is replaced in favor of constraints over elmt(:j:) and sort(:j:). 1