Results 1  10
of
32
Particle Filters for Mobile Robot Localization
, 2001
"... This article describes a family of methods, known as Monte Carlo localization (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is a particle filter combined with probabilistic models of robot perception and motion. Building on this, we will describe a variation of MCL which uses a ..."
Abstract

Cited by 94 (18 self)
 Add to MetaCart
This article describes a family of methods, known as Monte Carlo localization (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is a particle filter combined with probabilistic models of robot perception and motion. Building on this, we will describe a variation of MCL which uses a different proposal distribution (a mixture distribution) that facilitates fast recovery from global localization failures. As we will see, this proposal distribution has a range of advantages over that used in standard MCL, but it comes at the price that it is more difficult to implement, and it requires an algorithm for sampling poses from sensor measurements, which might be difficult to obtain. Finally, we will present an extension of MCL to cooperative multirobot localization of robots that can perceive each other during localization. All these approaches have been tested thoroughly in practice. Experimental results are provided to demonstrate their relative strengths and weaknesses in practical robot applications.
AISBN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks
 Journal of Artificial Intelligence Research
, 2000
"... Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, ..."
Abstract

Cited by 69 (4 self)
 Add to MetaCart
Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AISBN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in nitedimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from dierent stages of the algorithm. We tested the performance of the AISBN algorithm along with two state of the art general purpose sampling algorithms, lik...
Monte Carlo localization with mixture proposal distribution
 in Proc. 17th National Conf. on Artificial Intelligence (AAAI2000). AAAI Press/The
, 2000
"... Monte Carlo localization (MCL) is a Bayesian algorithm for mobile robot localization based on particle filters, which has enjoyed great practical success. This paper points out a limitation of MCL which is counterintuitive, namely that better sensors can yield worse results. An analysis of this pro ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
Monte Carlo localization (MCL) is a Bayesian algorithm for mobile robot localization based on particle filters, which has enjoyed great practical success. This paper points out a limitation of MCL which is counterintuitive, namely that better sensors can yield worse results. An analysis of this problem leads to the formulation of a new proposal distribution for the Monte Carlo sampling step. Extensive experimental results with physical robots suggest that the new algorithm is significantly more robust and accurate than plain MCL. Obviously, these results transcend beyond mobile robot localization and apply to a range of particle filter applications.
An Optimal Approximation Algorithm For Bayesian Inference
 Artificial Intelligence
, 1997
"... Approximating the inference probability Pr[X = xjE = e] in any sense, even for a single evidence node E, is NPhard. This result holds for belief networks that are allowed to contain extreme conditional probabilitiesthat is, conditional probabilities arbitrarily close to 0. Nevertheless, all p ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
Approximating the inference probability Pr[X = xjE = e] in any sense, even for a single evidence node E, is NPhard. This result holds for belief networks that are allowed to contain extreme conditional probabilitiesthat is, conditional probabilities arbitrarily close to 0. Nevertheless, all previous approximation algorithms have failed to approximate efficiently many inferences, even for belief networks without extreme conditional probabilities. We prove that we can approximate efficiently probabilistic inference in belief networks without extreme conditional probabilities. We construct a randomized approximation algorithmthe boundedvariance algorithmthat is a variant of the known likelihoodweighting algorithm. The boundedvariance algorithm is the first algorithm with provably fast inference approximation on all belief networks without extreme conditional probabilities. From the boundedvariance algorithm, we construct a deterministic approximation algorithm u...
Optimization by learning and simulation of Bayesian and Gaussian networks
, 1999
"... Estimation of Distribution Algorithms (EDA) constitute an example of stochastics heuristics based on populations of individuals every of which encode the possible solutions to the optimization problem. These populations of individuals evolve in succesive generations as the search progresses  organ ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
Estimation of Distribution Algorithms (EDA) constitute an example of stochastics heuristics based on populations of individuals every of which encode the possible solutions to the optimization problem. These populations of individuals evolve in succesive generations as the search progresses  organized in the same way as most evolutionary computation heuristics. In opposition to most evolutionary computation paradigms which consider the crossing and mutation operators as essential tools to generate new populations, EDA replaces those operators by the estimation and simulation of the joint probability distribution of the selected individuals. In this work, after making a review of the different approaches based on EDA for problems of combinatorial optimization as well as for problems of optimization in continuous domains, we propose new approaches based on the theory of probabilistic graphical models to solve problems in both domains. More precisely, we propose to adapt algorit...
A Survey of Algorithms for RealTime Bayesian Network Inference
 In In the joint AAAI02/KDD02/UAI02 workshop on RealTime Decision Support and Diagnosis Systems
, 2002
"... As Bayesian networks are applied to more complex and realistic realworld applications, the development of more efficient inference algorithms working under realtime constraints is becoming more and more important. This paper presents a survey of various exact and approximate Bayesian network ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
As Bayesian networks are applied to more complex and realistic realworld applications, the development of more efficient inference algorithms working under realtime constraints is becoming more and more important. This paper presents a survey of various exact and approximate Bayesian network inference algorithms. In particular, previous research on realtime inference is reviewed. It provides a framework for understanding these algorithms and the relationships between them. Some important issues in realtime Bayesian networks inference are also discussed.
Inference in Bayesian Networks
, 1999
"... A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduce ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduces major current methods for exact computation, briefly surveys approximation methods, and closes with a brief discussion of open issues.
An Importance Sampling Algorithm Based on Evidence PrePropagation
 In Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence
, 2003
"... Precision achieved by stochastic sampling algorithms for Bayesian networks typically deteriorates in face of extremely unlikely evidence. To address this problem... ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
Precision achieved by stochastic sampling algorithms for Bayesian networks typically deteriorates in face of extremely unlikely evidence. To address this problem...
Probabilistic conflicts in a search algorithm for estimating posterior probabilities in Bayesian networks
, 1996
"... This paper presents a search algorithm for estimating posterior probabilities in discrete Bayesian networks. It shows how conflicts (as used in consistencybased diagnosis) can be adapted to speed up the search. This algorithm is especially suited to the case where there are skewed distributions, al ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
This paper presents a search algorithm for estimating posterior probabilities in discrete Bayesian networks. It shows how conflicts (as used in consistencybased diagnosis) can be adapted to speed up the search. This algorithm is especially suited to the case where there are skewed distributions, although nothing about the algorithm or the definitions depends on skewness of distributions. The general idea is to forward simulate the network, based on the `normal' values for each variable (the value with high probability given its parents). When a predicted value is at odds with the observations, we analyse which variables were responsible for the expectation failure  these form a conflict  and continue forward simulation considering different values for these variables. This results in a set of possible worlds from which posterior probabilities  together with error bounds  can be 1 derived. Empirical results with Bayesian networks having tens of thousands of nodes are presented.