Results 1 
2 of
2
The Power Crust
, 2001
"... The power crust is a construction which takes a sample of points from the surface of a threedimensional object and produces a surface mesh and an approximate medial axis. The approach is to first approximate the medial axis transform (MAT) of the object. We then use an inverse transform to produce ..."
Abstract

Cited by 201 (6 self)
 Add to MetaCart
The power crust is a construction which takes a sample of points from the surface of a threedimensional object and produces a surface mesh and an approximate medial axis. The approach is to first approximate the medial axis transform (MAT) of the object. We then use an inverse transform to produce the surface representation from the MAT.
Amortization, Lazy Evaluation, and Persistence: Lists with Catenation via Lazy Linking
 Pages 646654 of: IEEE Symposium on Foundations of Computer Science
, 1995
"... Amortization has been underutilized in the design of persistent data structures, largely because traditional accounting schemes break down in a persistent setting. Such schemes depend on saving "credits" for future use, but a persistent data structure may have multiple "futures", each competing for ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
Amortization has been underutilized in the design of persistent data structures, largely because traditional accounting schemes break down in a persistent setting. Such schemes depend on saving "credits" for future use, but a persistent data structure may have multiple "futures", each competing for the same credits. We describe how lazy evaluation can often remedy this problem, yielding persistent data structures with good amortized efficiency. In fact, such data structures can be implemented purely functionally in any functional language supporting lazy evaluation. As an example of this technique, we present a purely functional (and therefore persistent) implementation of lists that simultaneously support catenation and all other usual list primitives in constant amortized time. This data structure is much simpler than the only existing data structure with comparable bounds, the recently discovered catenable lists of Kaplan and Tarjan, which support all operations in constant worstca...