Results 1  10
of
537
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times—the total latency—is minimized. In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimumlatency path available to it, given the network congestion caused by the other users. In general such a “selfishly motivated ” assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance. In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total
On kinetic waves: II) A theory of traffic Flow on long crowded roads
 Proc. Royal Society A229
, 1955
"... This paper uses the method of kinematic waves, developed in part I, but may be read independently. A functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing (? 2). From this a theory of the propagati ..."
Abstract

Cited by 259 (1 self)
 Add to MetaCart
This paper uses the method of kinematic waves, developed in part I, but may be read independently. A functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing (? 2). From this a theory of the propagation of changes in traffic distribution along these roads may be deduced (??2, 3). The theory is applied (?4) to the problem of estimating how a 'hump', or region of increased concentration, will move along a crowded main road. It is suggested that it will move slightly slower than the mean vehicle speed, and that vehicles passing through it will have to reduce speed rather suddenly (at a 'shock wave') on entering it, but can increase speed again only very gradually as they leave it. The hump gradually spreads out along the road, and the time scale of this process is estimated. The behaviour of such a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied (?5), and methods are obtained for estimating the extent and duration of the resulting holdup. The theory is applicable principally to traffic behaviour over a long stretch of road, but the paper concludes (? 6) with a discussion of its relevance to problems of flow near junctions, including a discussion of the starting flow at a controlled junction. In the introductory sections 1 and 2, we have included some elementary material on the quantitative study of traffic flow for the benefit of scientific readers unfamiliar with the subject. 1.
The price of anarchy is independent of the network topology
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 2002
"... We study the degradation in network performance caused by the selfish behavior of noncooperative network users. We consider a model of selfish routing in which the latency experienced by network traffic on an edge of the network is a function of the edge congestion, and network users are assumed to ..."
Abstract

Cited by 186 (16 self)
 Add to MetaCart
We study the degradation in network performance caused by the selfish behavior of noncooperative network users. We consider a model of selfish routing in which the latency experienced by network traffic on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route traffic on minimumlatency paths. The quality of a routing of traffic is measured by the sum of travel times, also called the total latency. The outcome of selfish routing—a Nash equilibrium—does not in general minimize the total latency; hence, selfish behavior carries the cost of decreased network performance. We quantify this degradation in network performance via the price of anarchy, the worstpossible ratio between the total latency of a Nash equilibrium and of an optimal routing of the traffic. We show the price of anarchy is determined only by the simplest of networks. Specifically, we prove that under weak hypotheses on the class of allowable edge latency functions, the worstcase ratio between the total latency of a Nash equilibrium and of a minimumlatency routing for any multicommodity flow network is achieved by a singlecommodity
Engineering and economic applications of complementarity problems
 SIAM Review
, 1997
"... Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions f ..."
Abstract

Cited by 155 (25 self)
 Add to MetaCart
Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions for the complementarity formulations. The goal of this documentation is threefold: (i) to summarize the essential applications of the nonlinear complementarity problem known to date, (ii) to provide a basis for the continued research on the nonlinear complementarity problem, and (iii) to supply a broad collection of realistic complementarity problems for use in algorithmic experimentation and other studies.
The price of routing unsplittable flow
 In Proc. 37th Symp. Theory of Computing (STOC
, 2005
"... The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to d ..."
Abstract

Cited by 119 (3 self)
 Add to MetaCart
The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to destination. The unsplittable, or discrete version of the problem is more realistic yet is more complex from the algorithmic point of view; in some settings optimizing such unsplittable traffic flow is computationally intractable. In this paper, we assume this more realistic unsplittable model, and investigate the ”price of anarchy”, or deterioration of network performance measured in total traffic latency under the selfish user behavior. We show that for linear edge latency functions the price of anarchy is exactly 2.618 for weighted demand and exactly 2.5 for unweighted demand. These results are easily extended to (weighted or unweighted) atomic ”congestion games”, where paths are replaced by general subsets. We also show that for polynomials of degree d edge latency functions the price of anarchy is dΘ(d). Our results hold also for mixed strategies. Previous results of Roughgarden and Tardos showed that for linear edge latency functions the price of anarchy is exactly 4 3 under the assumption that each user controls only a negligible fraction of the overall traffic (this result also holds for the splittable case). Note that under the assumption of negligible traffic pure and mixed strategies are equivalent and also splittable and unsplittable models are equivalent. 1
Pricing network edges for heterogeneous selfish users
 Proc. of STOC
, 2003
"... We study the negative consequences of selfish behavior in a congested network and economic means of influencing such behavior. We consider the model of selfish routing defined by Wardrop [30] and studied in a computer science context by Roughgarden and Tardos [26]. In this model, the latency experie ..."
Abstract

Cited by 97 (10 self)
 Add to MetaCart
We study the negative consequences of selfish behavior in a congested network and economic means of influencing such behavior. We consider the model of selfish routing defined by Wardrop [30] and studied in a computer science context by Roughgarden and Tardos [26]. In this model, the latency experienced by network traffic on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route traffic on minimumlatency paths. The quality of a routing of traffic is measured by the sum of travel times (the total latency). It is well known that the outcome of selfish routing (a Nash equilibrium) does not minimize the total latency and can be improved upon with coordination. An ancient strategy for improving the selfish solution is the principle of marginal cost pricing, which asserts that on each edge of the network, each network user on the edge should pay a tax offsetting the congestion effects caused by its presence. By pricing network edges according to this principle, the inefficiency of selfish routing can always be eradicated. This result, while fundamental, assumes a very strong homogeneity property: all network users are assumed to trade off time and money in an identical way. The guarantee also ignores both the algorithmic
Stability of endtoend algorithms for joint routing and rate control
"... Dynamic multipath routing has the potential to improve the reliability and performance of a communication network, but carries a risk. Routing needs to respond quickly to achieve the potential benefits, but not so quickly that the network is destabilized. This paper studies how rapidly routing can ..."
Abstract

Cited by 93 (1 self)
 Add to MetaCart
Dynamic multipath routing has the potential to improve the reliability and performance of a communication network, but carries a risk. Routing needs to respond quickly to achieve the potential benefits, but not so quickly that the network is destabilized. This paper studies how rapidly routing can respond, without compromising stability. We present a sufficient condition for the local stability of endtoend algorithms for joint routing and rate control. The network model considered allows an arbitrary interconnection of sources and resources, and heterogeneous propagation delays. The sufficient condition we present is decentralized: the responsiveness of each route is restricted by the roundtrip time of that route alone, and not by the roundtrip times of other routes. Our results suggest that stable, scalable loadsharing across paths, based on endtoend measurements, can be achieved on the same rapid timescale as rate control, namely the timescale of roundtrip times.
Selfish Routing In Capacitated Networks
 MATHEMATICS OF OPERATIONS RESEARCH
, 2003
"... According to Wardrop's first principle, agents in a congested network choose their routes selfishly, a behavior that is captured by the Nash equilibrium of the underlying noncooperative game. A Nash equilibrium does not optimize any global criterion per se, and so there is no apparent reason wh ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
According to Wardrop's first principle, agents in a congested network choose their routes selfishly, a behavior that is captured by the Nash equilibrium of the underlying noncooperative game. A Nash equilibrium does not optimize any global criterion per se, and so there is no apparent reason why it should be close to a solution of minimal total travel time, i.e. the system optimum. In this paper, we offer extensions of recent positive results on the efficiency of Nash equilibria in traffic networks. In contrast to prior work, we present results for networks with capacities and for latency functions that are nonconvex, nondifferentiable and even discontinuous. The inclusion of upper bounds on arc flows has early been recognized as an important means to provide a more accurate description of traffic flows. In this more general model, multiple Nash equilibria may exist and an arbitrary equilibrium does not need to be nearly efficient. Nonetheless, our main result shows that the best equilibrium is as efficient as in the model without capacities. Moreover, this holds true for broader classes of travel cost functions than considered hitherto.
Selfish Traffic Allocation for Server Farms
, 2003
"... We study the price of selfish routing in noncooperative networks like the Internet. In particular, we investigate the price... ..."
Abstract

Cited by 80 (5 self)
 Add to MetaCart
We study the price of selfish routing in noncooperative networks like the Internet. In particular, we investigate the price...