Results 1 
4 of
4
Enumeration Reducibility, Nondeterministic Computations and Relative . . .
 RECURSION THEORY WEEK, OBERWOLFACH 1989, VOLUME 1432 OF LECTURE NOTES IN MATHEMATICS
, 1990
"... ..."
The theory of the degrees below 0
 J. London Math. Soc
, 1981
"... Degree theory, that is the study of the structure of the Turing degrees (or degrees of unsolvability) has been divided by Simpson [24; §5] into two parts—global and local. By the global theory he means the study of general structural properties of 3d— the degrees as a partially ordered set or uppers ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Degree theory, that is the study of the structure of the Turing degrees (or degrees of unsolvability) has been divided by Simpson [24; §5] into two parts—global and local. By the global theory he means the study of general structural properties of 3d— the degrees as a partially ordered set or uppersemilattice. The local theory concerns
Propositional quantification in the topological semantics for S4
 Notre Dame Journal of Formal Logic
, 1997
"... quantifiers range over all the sets of possible worlds. S5π+ is decidable and, as Fine and Kripke showed, many of the other systems are recursively isomorphic to secondorder logic. In the present paper I consider the propositionally quantified system that arises from the topological semantics for S ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
quantifiers range over all the sets of possible worlds. S5π+ is decidable and, as Fine and Kripke showed, many of the other systems are recursively isomorphic to secondorder logic. In the present paper I consider the propositionally quantified system that arises from the topological semantics for S4, rather than from the Kripke semantics. The topological system, which I dub S4πt, isstrictly weaker than its Kripkean counterpart. I prove here that secondorder arithmetic can be recursively embedded in S4πt. Inthe course of the investigation, I also sketch a proof of Fine’s and Kripke’s results that the Kripkean system S4π+ is recursively isomorphic to secondorder logic. 1Introduction One way to extend a propositional logic to a language with propositional quantifiers is to begin with a semantics for the logic; extract from the semantics a notion of a proposition; and interpret the quantifiers as ranging over the propositions. Thus, Fine [4] extends the Kripke semantics for modal logics to propositionally quantified systems S5π+, S4π+, S4.2π+, and such: given a Kripke frame, the quantifiers range over all sets of possible worlds. S5π+ is decidable ([4] and Kaplan [14]). In later unpublished work, Fine and Kripke independently showed that S4π+, S4.2π+, K4π+, Tπ+, Kπ+, and Bπ+ and others are recursively isomorphic to full secondorder classical logic. (Fine informs me that he later proved this stronger result. Kripke informs me that he too proved this stronger result in the early 1970s. A proof of this result occurs in Kaminski and Tiomkin [13], who use techniques similar to those used in Kremer [16] and to those used below. These techniques do not apply to S4.3π+. But according to Kaminski and Tiomkin, work of Gurevich and Shelah ([9], [10], and [39]) implies that secondorder arithmetic is interpretable in S4.3π+ and furthermore that, under
Interpolating dr. e. and REA degrees between r. e. degrees
, 1995
"... This paper is a contribution to the investigation of the relationship between the ..."
Abstract
 Add to MetaCart
This paper is a contribution to the investigation of the relationship between the