Results 1  10
of
28
A Bayesian method for the induction of probabilistic networks from data
 Machine Learning
, 1992
"... Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of ..."
Abstract

Cited by 1095 (26 self)
 Add to MetaCart
Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems.
Learning Bayesian Networks from Data: An InformationTheory Based Approach
"... This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional indepe ..."
Abstract

Cited by 97 (5 self)
 Add to MetaCart
This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
A Bayesian Approach to Causal Discovery
, 1997
"... We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that t ..."
Abstract

Cited by 81 (1 self)
 Add to MetaCart
We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraintbased approach uses categorical information about conditionalindependence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraintbased counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structuresboth quantitative and qualitativecan be made. Three, information from several models can be combined to make better inferences and to better ...
Learning Belief Networks from Data: An Information Theory Based Approach
 In Proceedings of the Sixth ACM International Conference on Information and Knowledge Management
"... This paper presents an efficient algorithm for learning Bayesian belief networks from databases. The algorithm takes a database as input and constructs the belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data ..."
Abstract

Cited by 64 (7 self)
 Add to MetaCart
This paper presents an efficient algorithm for learning Bayesian belief networks from databases. The algorithm takes a database as input and constructs the belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data set that is large enough, this algorithm can generate a belief network very close to the underlying model, and at the same time, enjoys the time complexity of O N ( ) 4 on conditional independence (CI) tests. When the data set has a normal DAGFaithful (see Section 3.2) probability distribution, the algorithm guarantees that the structure of a perfect map [Pearl, 1988] of the underlying dependency model is generated. To evaluate this algorithm, we present the experimental results on three versions of the wellknown ALARM network database, which has 37 attributes and 10,000 records. The results show that this algorithm is accurate and efficient. The proof of correctness and the analysis of c...
Exact Bayesian structure discovery in Bayesian networks
 J. of Machine Learning Research
, 2004
"... We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n2 n) time, where n is the number of attributes; the number of parents per ..."
Abstract

Cited by 60 (8 self)
 Add to MetaCart
We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n2 n) time, where n is the number of attributes; the number of parents per attribute is bounded by a constant. In this paper we show that the posterior probabilities for all the n(n−1) potential edges can be computed in O(n2 n) total time. This result is achieved by a forward–backward technique and fast Möbius transform algorithms, which are of independent interest. The resulting speedup by a factor of about n 2 allows us to experimentally study the statistical power of learning moderatesize networks. We report results from a simulation study that covers data sets with 20 to 10,000 records over 5 to 25 discrete attributes. 1
An Algorithm for Bayesian Belief Network Construction from Data
 IN PROCEEDINGS OF AI & STAT’97
, 1997
"... This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier in the order) as input and constructs a belief network structure as output ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier in the order) as input and constructs a belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data set which is large enough and has a DAGIsomorphic probability distribution, this algorithm guarantees that the perfect map [1] of the underlying dependency model is generated, and at the same time, enjoys the time complexity of O N ( ) on conditional independence (CI) tests. To evaluate this algorithm, we present the experimental results on three versions of the wellknown ALARM network database, which has 37 attributes and 10,000 records. The correctness proof and the analysis of computational complexity are also presented. We also discuss the features of our work and relate it to previous works.
Asymptotic model selection for directed networks with hidden variables
, 1996
"... We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a ..."
Abstract

Cited by 47 (13 self)
 Add to MetaCart
We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a model according to the dimension of its parameters. We argue that the dimension of a Bayesian network with hidden variables is the rank of the Jacobian matrix of the transformation between the parameters of the network and the parameters of the observable variables. We compute the dimensions of several networks including the naive Bayes model with a hidden root node. 1
Improved learning of Bayesian networks
 Proc. of the Conf. on Uncertainty in Artificial Intelligence
, 2001
"... Two or more Bayesian network structures are Markov equivalent when the corresponding acyclic digraphs encode the same set of conditional independencies. Therefore, the search space of Bayesian network structures may be organized in equivalence classes, where each of them represents a different set o ..."
Abstract

Cited by 38 (6 self)
 Add to MetaCart
Two or more Bayesian network structures are Markov equivalent when the corresponding acyclic digraphs encode the same set of conditional independencies. Therefore, the search space of Bayesian network structures may be organized in equivalence classes, where each of them represents a different set of conditional independencies. The collection of sets of conditional independencies obeys a partial order, the socalled “inclusion order.” This paper discusses in depth the role that the inclusion order plays in learning the structure of Bayesian networks. In particular, this role involves the way a learning algorithm traverses the search space. We introduce a condition for traversal operators, the inclusion boundary condition, which, when it is satisfied, guarantees that the search strategy can avoid local maxima. This is proved under the assumptions that the data is sampled from a probability distribution which is faithful to an acyclic digraph, and the length of the sample is unbounded. The previous discussion leads to the design of a new traversal operator and two new learning algorithms in the context of heuristic search and the Markov Chain Monte Carlo method. We carry out a set of experiments with synthetic and realworld data that show empirically the benefit of striving for the inclusion order when learning Bayesian networks from data.
Learning Bayesian Networks from Data: An Efficient Approach Based on Information Theory
, 1997
"... This paper addresses the problem of learning Bayesian network structures from data by using an information theoretic dependency analysis approach. Based on our threephase construction mechanism, two efficient algorithms have been developed. One of our algorithms deals with a special case where the ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
This paper addresses the problem of learning Bayesian network structures from data by using an information theoretic dependency analysis approach. Based on our threephase construction mechanism, two efficient algorithms have been developed. One of our algorithms deals with a special case where the node ordering is given, the algorithm only require ) ( 2 N O CI tests and is correct given that the underlying model is DAGFaithful [Spirtes et. al., 1996]. The other algorithm deals with the general case and requires ) ( 4 N O conditional independence (CI) tests. It is correct given that the underlying model is monotone DAGFaithful (see Section 4.4). A system based on these algorithms has been developed and distributed through the Internet. The empirical results show that our approach is efficient and reliable. 1 Introduction The Bayesian network is a powerful knowledge representation and reasoning tool under conditions of uncertainty. A Bayesian network is a directed acyclic graph ...
A new approach for learning belief networks using independence criteria
 International Journal of Approximate Reasoning
, 2000
"... q ..."