Results 1  10
of
486
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 702 (39 self)
 Add to MetaCart
The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. The treatment of rules and proofs focuses on his notion of a judgement. Logics are represented in LF via a new principle, the judgements as types principle, whereby each judgement is identified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers can be constructed.
The Foundation of a Generic Theorem Prover
 Journal of Automated Reasoning
, 1989
"... Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabell ..."
Abstract

Cited by 423 (47 self)
 Add to MetaCart
Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabelle is now based on higherorder logic  a precise and wellunderstood foundation. Examples illustrate use of this metalogic to formalize logics and proofs. Axioms for firstorder logic are shown sound and complete. Backwards proof is formalized by metareasoning about objectlevel entailment. Higherorder logic has several practical advantages over other metalogics. Many proof techniques are known, such as Huet's higherorder unification procedure. Key words: higherorder logic, higherorder unification, Isabelle, LCF, logical frameworks, metareasoning, natural deduction Contents 1 History and overview 2 2 The metalogic M 4 2.1 Syntax of the metalogic ......................... 4 2.2 ...
Using dependent types to express modular structure
 In Thirteenth ACM Symposium on Principles of Programming Languages
, 1986
"... Several related typed languages for modular programming and data abstraction have been proposed recently, including Pebble, SOL, and ML modules. We review and compare the basic typetheoretic ideas behind these languages and evaluate how they ..."
Abstract

Cited by 125 (5 self)
 Add to MetaCart
Several related typed languages for modular programming and data abstraction have been proposed recently, including Pebble, SOL, and ML modules. We review and compare the basic typetheoretic ideas behind these languages and evaluate how they
Inheritance As Implicit Coercion
 Information and Computation
, 1991
"... . We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. ..."
Abstract

Cited by 120 (3 self)
 Add to MetaCart
. We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in the target of the translation. Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic lambda calculus, thus providing many models for the original language. This technique makes it possible to model a rich type discipline which includes parametric polymorphism and recursive types as well as inheritance. A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the sense discussed in this paper arises from the fact that programs can typecheck in more than one way. Since interpretations follow the type...
A syntactic approach to foundational proofcarrying code
 In Seventeenth IEEE Symposium on Logic in Computer Science
, 2002
"... ProofCarrying Code (PCC) is a general framework for verifying the safety properties of machinelanguage programs. PCC proofs are usually written in a logic extended with languagespecific typing rules. In Foundational ProofCarrying Code (FPCC), on the other hand, proofs are constructed and verifie ..."
Abstract

Cited by 94 (19 self)
 Add to MetaCart
ProofCarrying Code (PCC) is a general framework for verifying the safety properties of machinelanguage programs. PCC proofs are usually written in a logic extended with languagespecific typing rules. In Foundational ProofCarrying Code (FPCC), on the other hand, proofs are constructed and verified using strictly the foundations of mathematical logic, with no typespecific axioms. FPCC is more flexible and secure because it is not tied to any particular type system and it has a smaller trusted base. Foundational proofs, however, are much harder to construct. Previous efforts on FPCC all required building sophisticated semantic models for types. In this paper, we present a syntactic approach to FPCC that avoids the difficulties of previous work. Under our new scheme, the foundational proof for a typed machine program simply consists of the typing derivation plus the formalized syntactic soundness proof for the underlying type system. We give a translation from a typed assembly language into FPCC and demonstrate the advantages of our new system via an implementation in the Coq proof assistant. 1.
The Semantics of Reflected Proof
 IN PROC. OF FIFTH SYMP. ON LOGIC IN COMP. SCI
, 1990
"... We begin to lay the foundations for reasoning about proofs whose steps include both invocations of programs to build subproofs (tactics) and references to representations of proofs themselves (reflected proofs). The main result is the definition of a single type of proof which can mention itself, ..."
Abstract

Cited by 90 (11 self)
 Add to MetaCart
We begin to lay the foundations for reasoning about proofs whose steps include both invocations of programs to build subproofs (tactics) and references to representations of proofs themselves (reflected proofs). The main result is the definition of a single type of proof which can mention itself, using a new technique which finds a fixed point of a mapping between metalanguage and object language. This single type contrasts with hierarchies of types used in other approaches to accomplish the same classification. We show that these proofs are valid, and that every proof can be reduced to a proof involving only primitive inference rules. We also show how to extend the results to proofs from which programs (such as tactics) can be derived, and to proofs that can refer to a library of definitions and previously proven theorems. We believe that the mechanism of reflection is fundamental in building proof development systems, and we illustrate its power with applications to automating reasoning and describing modes of computation.
Logical Support for Modularisation
 LOGICAL ENVIRONMENTS
, 1993
"... Modularisation is important for managing the complex structures that arise in large theorem proving problems, and in large software and/or hardware development projects. This paper studies some properties of logical systems that support the definition, combination, parameterisation and reuse of ..."
Abstract

Cited by 86 (28 self)
 Add to MetaCart
Modularisation is important for managing the complex structures that arise in large theorem proving problems, and in large software and/or hardware development projects. This paper studies some properties of logical systems that support the definition, combination, parameterisation and reuse of modules. Our results show some new connections among: (1) the preservation of various kinds of conservative extension under pushouts; (2) various distributive laws for information hiding over sums; and (3) (Craig style) interpolation properties. In addition, we study differences between syntactic and semantic formulations of conservative extension properties, and of distributive laws. A model theoretic property that we call exactness plays an important role in some results. This paper explores the interplay between syntax and semantics, and thus lies in the tradition of abstract model theory. We represent logical systems as institutions. An important technical foundation is a new ...