Results 1  10
of
56
A Unified Framework for Hybrid Control: Model and Optimal Control Theory
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 1998
"... Complex natural and engineered systems typically possess a hierarchical structure, characterized by continuousvariable dynamics at the lowest level and logical decisionmaking at the highest. Virtually all control systems todayfrom flight control to the factory floorperform computercoded chec ..."
Abstract

Cited by 183 (8 self)
 Add to MetaCart
Complex natural and engineered systems typically possess a hierarchical structure, characterized by continuousvariable dynamics at the lowest level and logical decisionmaking at the highest. Virtually all control systems todayfrom flight control to the factory floorperform computercoded checks and issue logical as well as continuousvariable control commands. The interaction of these different types of dynamics and information leads to a challenging set of "hybrid" control problems. We propose a very general framework that systematizes the notion of a hybrid system, combining differential equations and automata, governed by a hybrid controller that issues continuousvariable commands and makes logical decisions. We first identify the phenomena that arise in realworld hybrid systems. Then, we introduce a mathematical model of hybrid systems as interacting collections of dynamical systems, evolving on continuousvariable state spaces and subject to continuous controls and discrete transitions. The model captures the identified phenomena, subsumes previous models, yet retains enough structure on which to pose and solve meaningful control problems. We develop a theory for synthesizing hybrid controllers for hybrid plants in an optimal control framework. In particular, we demonstrate the existence of optimal (relaxed) and nearoptimal (precise) controls and derive "generalized quasivariational inequalities" that the associated value function satisfies. We summarize algorithms for solving these inequalities based on a generalized Bellman equation, impulse control, and linear programming.
A Survey of Computational Complexity Results in Systems and Control
, 2000
"... The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fi ..."
Abstract

Cited by 116 (21 self)
 Add to MetaCart
The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial time algorithms, NPcompleteness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, timevarying linear systems, nonlinear and hybrid systems, and stochastic optimal control.
Reachability Analysis of Dynamical Systems having PiecewiseConstant Derivatives
 Theoretical Computer Science
, 1995
"... In this paper we consider a class of hybrid systems, namely dynamical systems with piecewiseconstant derivatives (PCD systems). Such systems consist of a partition of the Euclidean space into a finite set of polyhedral sets (regions). Within each region the dynamics is defined by a constant vector ..."
Abstract

Cited by 111 (18 self)
 Add to MetaCart
In this paper we consider a class of hybrid systems, namely dynamical systems with piecewiseconstant derivatives (PCD systems). Such systems consist of a partition of the Euclidean space into a finite set of polyhedral sets (regions). Within each region the dynamics is defined by a constant vector field, hence discrete transitions occur only on the boundaries between regions where the trajectories change their direction. With respect to such systems we investigate the reachability question: Given an effective description of the systems and of two polyhedral subsets P and Q of the statespace, is there a trajectory starting at some x 2 P and reaching some point in Q? Our main results are a decision procedure for twodimensional systems, and an undecidability result for three or more dimensions. 1 Introduction 1.1 Motivation Hybrid systems (HS) are systems that combine intercommunicating discrete and continuous components. Most embedded systems belong to this class since they operate...
Differential Dynamic Logic for Hybrid Systems
, 2007
"... Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, ..."
Abstract

Cited by 41 (30 self)
 Add to MetaCart
Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce a dynamic logic for hybrid programs, which is a program notation for hybrid systems. As a verification technique that is suitable for automation, we introduce a free variable proof calculus with a novel combination of realvalued free variables and Skolemisation for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus is compositional, i.e., it reduces properties of hybrid programs to properties of their parts. Our main result proves that this calculus axiomatises the transition behaviour of hybrid systems completely relative to differential equations. In a case study with cooperating traffic agents of the European Train Control System, we further show that our calculus is wellsuited for verifying realistic hybrid systems with parametric system dynamics.
Complexity of Stability and Controllability of Elementary Hybrid Systems
, 1997
"... this paper, weconsider simple classes of nonlinear systems and provethatbasic questions related to their stabilityandcontrollabilityare either undecidable or computationally intractable (NPhard). As a special case, weconsider a class of hybrid systems in which the state space is partitioned into tw ..."
Abstract

Cited by 34 (10 self)
 Add to MetaCart
this paper, weconsider simple classes of nonlinear systems and provethatbasic questions related to their stabilityandcontrollabilityare either undecidable or computationally intractable (NPhard). As a special case, weconsider a class of hybrid systems in which the state space is partitioned into two halfspaces, and the dynamics in eachhalfspace correspond to a differentlinear system
Iteration, Inequalities, and Differentiability in Analog Computers
, 1999
"... Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such t ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such that F (x; t) = f t (x) for nonnegative integers t. We show that G is not closed under iteration, but a simple extension of it is. In particular, if we relax the definition of the GPAC slightly to include unique solutions to boundary value problems, or equivalently if we allow functions x k (x) that sense inequalities in a dierentiable way, the resulting class, which we call G + k , is closed under iteration. Furthermore, G + k includes all primitive recursive functions, and has the additional closure property that if T (x) is in G+k , then any function of x computable by a Turing machine in T (x) time is also.
A Survey of ContinuousTime Computation Theory
 Advances in Algorithms, Languages, and Complexity
, 1997
"... Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists o ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists on the general theory of continuoustime models of computation. In this paper, we survey the existing models and results in this area, and point to some of the open research questions. 1 Introduction After a long period of oblivion, interest in analog computation is again on the rise. The immediate cause for this new wave of activity is surely the success of the neural networks "revolution", which has provided hardware designers with several new numerically based, computationally interesting models that are structurally sufficiently simple to be implemented directly in silicon. (For designs and actual implementations of neural models in VLSI, see e.g. [30, 45]). However, the more fundamental...
An analog characterization of the Grzegorczyk hierarchy
 Journal of Complexity
, 2002
"... We study a restricted version of Shannon's General . . . ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
We study a restricted version of Shannon's General . . .
Achilles and the Tortoise climbing up the hyperarithmetical hierarchy
, 1997
"... We pursue the study of the computational power of Piecewise Constant Derivative (PCD) systems started in [5, 6]. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous tim ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
We pursue the study of the computational power of Piecewise Constant Derivative (PCD) systems started in [5, 6]. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous time. We prove that the languages recognized by rational PCD systems in dimension d = 2k + 3 (respectively: d = 2k + 4), k 0, in finite continuous time are precisely the languages of the ! k th (resp. ! k + 1 th ) level of the hyperarithmetical hierarchy. Hence the reachability problem for rational PCD systems of dimension d = 2k + 3 (resp. d = 2k + 4), k 1, is hyperarithmetical and is \Sigma ! kcomplete (resp. \Sigma ! k +1 complete).
On the Computational Power of Dynamical Systems and Hybrid Systems
 Theoretical Computer Science
, 1996
"... We explore the simulation and computational capabilities of discrete and continuous dynamical systems. We introduce and compare several notions of simulation between discrete and continuous systems. We give a general framework that allows discrete and continuous dynamical systems to be considered as ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
We explore the simulation and computational capabilities of discrete and continuous dynamical systems. We introduce and compare several notions of simulation between discrete and continuous systems. We give a general framework that allows discrete and continuous dynamical systems to be considered as computational machines. We introduce a new discrete model of computation: the analog automaton model. We characterize the computational power of this model as P=poly in polynomial time and as unbounded in exponential time. We prove that many very simple dynamical systems from literature are able to simulate analog automata. From this results we deduce that many dynamical systems have intrinsically superTuring capabilities. 1 Introduction The computational power of abstract machines which compute over the reals in unbounded precision in constant time is still an open problem. We refer the reader to [18] for an upto date survey. Indeed, a basic model for their computations has been propose...