Results 1  10
of
121
On Bayesian analysis of mixtures with an unknown number of components
 INSTITUTE OF INTERNATIONAL ECONOMICS PROJECT ON INTERNATIONAL COMPETITION POLICY," COM/DAFFE/CLP/TD(94)42
, 1997
"... ..."
Marginal likelihood from the Gibbs output
 J. Am. Stat. Assoc
, 1995
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 324 (19 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Hidden Markov processes
 IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite ..."
Abstract

Cited by 170 (3 self)
 Add to MetaCart
Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finitestate finitealphabet HMPs was expanded to HMPs with finite as well as continuous state spaces and a general alphabet. In particular, statistical properties and ergodic theorems for relative entropy densities of HMPs were developed. Consistency and asymptotic normality of the maximumlikelihood (ML) parameter estimator were proved under some mild conditions. Similar results were established for switching autoregressive processes. These processes generalize HMPs. New algorithms were developed for estimating the state, parameter, and order of an HMP, for universal coding and classification of HMPs, and for universal decoding of hidden Markov channels. These and other related topics are reviewed in this paper. Index Terms—Baum–Petrie algorithm, entropy ergodic theorems, finitestate channels, hidden Markov models, identifiability, Kalman filter, maximumlikelihood (ML) estimation, order estimation, recursive parameter estimation, switching autoregressive processes, Ziv inequality. I.
Practical Bayesian Density Estimation Using Mixtures Of Normals
 Journal of the American Statistical Association
, 1995
"... this paper, we propose some solutions to these problems. Our goal is to come up with a simple, practical method for estimating the density. This is an interesting problem in its own right, as well as a first step towards solving other inference problems, such as providing more flexible distributions ..."
Abstract

Cited by 116 (2 self)
 Add to MetaCart
this paper, we propose some solutions to these problems. Our goal is to come up with a simple, practical method for estimating the density. This is an interesting problem in its own right, as well as a first step towards solving other inference problems, such as providing more flexible distributions in hierarchical models. To see why the posterior is improper under the usual reference prior, we write the model in the following way. Let Z = (Z 1 ; : : : ; Z n ) and X = (X 1 ; : : : ; X n ). The Z
Dealing with label switching in mixture models
 Journal of the Royal Statistical Society, Series B
, 2000
"... In a Bayesian analysis of finite mixture models, parameter estimation and clustering are sometimes less straightforward that might be expected. In particular, the common practice of estimating parameters by their posterior mean, and summarising joint posterior distributions by marginal distributions ..."
Abstract

Cited by 109 (0 self)
 Add to MetaCart
In a Bayesian analysis of finite mixture models, parameter estimation and clustering are sometimes less straightforward that might be expected. In particular, the common practice of estimating parameters by their posterior mean, and summarising joint posterior distributions by marginal distributions, often leads to nonsensical answers. This is due to the socalled “labelswitching” problem, which is caused by symmetry in the likelihood of the model parameters. A frequent response to this problem is to remove the symmetry using artificial identifiability constraints. We demonstrate that this fails in general to solve the problem, and describe an alternative class of approaches, relabelling algorithms, which arise from attempting to minimise the posterior expected loss under a class of loss functions. We describe in detail one particularly simple and general relabelling algorithm, and illustrate its success in dealing with the labelswitching problem on two examples.
Bayesian Methods for Hidden Markov Models  Recursive Computing in the 21st Century
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2002
"... Markov chain Monte Carlo (MCMC) sampling strategies can be used to simulate hidden Markov model (HMM) parameters from their posterior distribution given observed data. Some MCMC methods (for computing likelihood, conditional probabilities of hidden states, and the most likely sequence of states) use ..."
Abstract

Cited by 86 (8 self)
 Add to MetaCart
Markov chain Monte Carlo (MCMC) sampling strategies can be used to simulate hidden Markov model (HMM) parameters from their posterior distribution given observed data. Some MCMC methods (for computing likelihood, conditional probabilities of hidden states, and the most likely sequence of states) used in practice can be improved by incorporating established recursive algorithms. The most important is a set of forwardbackward recursions calculating conditional distributions of the hidden states given observed data and model parameters. We show how to use the recursive algorithms in an MCMC context and demonstrate mathematical and empirical results showing a Gibbs sampler using the forwardbackward recursions mixes more rapidly than another sampler often used for HMM's. We introduce an augmented variables technique for obtaining unique state labels in HMM's and finite mixture models. We show how recursive computing allows statistically efficient use of MCMC output when estimating the hidden states. We directly calculate the posterior distribution of the hidden chain's state space size by MCMC, circumventing asymptotic arguments underlying the Bayesian information criterion, which is shown to be inappropriate for a frequently analyzed data set in the HMM literature. The use of loglikelihood for assessing MCMC convergence is illustrated, and posterior predictive checks are used to investigate application specific questions of model adequacy.
Detecting Features in Spatial Point Processes with . . .
, 1995
"... We consider the problem of detecting features in spatial point processes in the presence of substantial clutter. One example is the detection of mine elds using reconnaissance aircraft images that erroneously identify many objects that are not mines. Another is the detection of seismic faults on the ..."
Abstract

Cited by 81 (31 self)
 Add to MetaCart
We consider the problem of detecting features in spatial point processes in the presence of substantial clutter. One example is the detection of mine elds using reconnaissance aircraft images that erroneously identify many objects that are not mines. Another is the detection of seismic faults on the basis of earthquake catalogs: earthquakes tend to be clustered close to the faults, but there are many that are farther away. Our solution uses modelbased clustering based on a mixture model for the process, in which features are assumed to generate points according to highly linear multivariate normal densities, and the clutter arises according to a spatial Poisson process. Very nonlinear features are represented by several highly linear multivariate normal densities, giving a piecewise linear representation. The model is estimated in two stages. In the rst stage, hierarchical modelbased clustering is used to provide a rst estimate of the features. In the second stage, this clustering is re ned using the EM algorithm. The number of features is found using an approximation to the posterior probability of each number of features. For the minefield
Sequential Monte Carlo Methods for Multiple Target Tracking and Data Fusion
 IEEE Trans. on Signal Processing
, 2002
"... Abstract—The classical particle filter deals with the estimation of one state process conditioned on a realization of one observation process. We extend it here to the estimation of multiple state processes given realizations of several kinds of observation processes. The new algorithm is used to tr ..."
Abstract

Cited by 78 (5 self)
 Add to MetaCart
Abstract—The classical particle filter deals with the estimation of one state process conditioned on a realization of one observation process. We extend it here to the estimation of multiple state processes given realizations of several kinds of observation processes. The new algorithm is used to track with success multiple targets in a bearingsonly context, whereas a JPDAF diverges. Making use of the ability of the particle filter to mix different types of observations, we then investigate how to join passive and active measurements for improved tracking. Index Terms—Bayesian estimation, bearingsonly tracking, Gibbs sampler, multiple receivers, multiple targets tracking,
Tracking Multiple Objects with Particle Filtering
, 2000
"... We address the problem of multitarget tracking encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies on the fact that the estimation of the states requires the assignment of the observations to the ..."
Abstract

Cited by 75 (4 self)
 Add to MetaCart
We address the problem of multitarget tracking encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies on the fact that the estimation of the states requires the assignment of the observations to the multiple targets. We propose an extension of the classical particle filter where the stochastic vector of assignment is estimated by a Gibbs sampler. This algorithm is used to estimate the trajectories of multiple targets from their noisy bearings, thus showing its ability to solve the data association problem. Moreover this algorithm is easily extended to multireceiver observations where the receivers can produce measurements of various nature with different frequencies.
Bayesian Analysis of Mixture Models with an Unknown Number of Components  an alternative to reversible jump methods
, 1998
"... Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the "reversible jump" methodology described by Green (1995). ..."
Abstract

Cited by 62 (0 self)
 Add to MetaCart
Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the "reversible jump" methodology described by Green (1995). We describe an alternative MCMC method which views the parameters of the model as a (marked) point process, extending methods suggested by Ripley (1977) to create a Markov birthdeath process with an appropriate stationary distribution. Our method is easy to implement, even in the case of data in more than one dimension, and we illustrate it on both univariate and bivariate data. Keywords: Bayesian analysis, Birthdeath process, Markov process, MCMC, Mixture model, Model Choice, Reversible Jump, Spatial point process 1 Introduction Finite mixture models are typically used to model data where each observation is assumed to have arisen from one of k groups, each group being suitably modelle...