Results 1  10
of
48
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 207 (8 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
All Pairs Almost Shortest Paths
 SIAM Journal on Computing
, 1996
"... Let G = (V; E) be an unweighted undirected graph on n vertices. A simple argument shows that computing all distances in G with an additive onesided error of at most 1 is as hard as Boolean matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe g) time ..."
Abstract

Cited by 80 (8 self)
 Add to MetaCart
Let G = (V; E) be an unweighted undirected graph on n vertices. A simple argument shows that computing all distances in G with an additive onesided error of at most 1 is as hard as Boolean matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe g) time algorithm APASP 2 for computing all distances in G with an additive onesided error of at most 2. The algorithm APASP 2 is simple, easy to implement, and faster than the fastest known matrix multiplication algorithm. Furthermore, for every even k ? 2, we describe an g) time algorithm APASP k for computing all distances in G with an additive onesided error of at most k.
All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication
 Journal of the ACM
, 2000
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves... ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves...
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 55 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Nearlinear time construction of sparse neighborhood covers
 SIAM Journal on Computing
, 1998
"... Abstract. This paper introduces a nearlinear time sequential algorithm for constructing a sparse neighborhood cover. This implies analogous improvements (from quadratic to nearlinear time) for any problem whose solution relies on network decompositions, including small edge cuts in planar graphs, ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
Abstract. This paper introduces a nearlinear time sequential algorithm for constructing a sparse neighborhood cover. This implies analogous improvements (from quadratic to nearlinear time) for any problem whose solution relies on network decompositions, including small edge cuts in planar graphs, approximate shortest paths, and weight and distancepreserving graph spanners. In particular, an O(log n) approximation to the kshortest paths problem on an nvertex, Eedge graph is obtained that runs in Õ (n + E + k) time.
All Pairs Shortest Paths in weighted directed graphs  exact and almost exact algorithms
, 1998
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small abso ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small absolute value in ~ O(n 2+ ) time, where satisfies the equation !(1; ; 1) = 1 + 2 and !(1; ; 1) is the exponent of the multiplication of an n \Theta n matrix by an n \Theta n matrix. The currently best available bounds on !(1; ; 1), obtained by Coppersmith and Winograd, and by Huang and Pan, imply that ! 0:575. The running time of our algorithm is therefore O(n 2:575 ). Our algorithm improves on the ~ O(n (3+!)=2 ) time algorithm, where ! = !(1; 1; 1) ! 2:376 is the usual exponent of matrix multiplication, obtained by Alon, Galil and Margalit, whose running time is only known to be O(n 2:688 ). The second
AllPairs SmallStretch Paths
 Journal of Algorithms
, 1997
"... Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that f ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that finding paths of stretch less than 2 between all pairs of vertices in an undirected graph with n vertices is at least as hard as the Boolean multiplication of two n \Theta n matrices. We describe three algorithms for finding smallstretch paths between all pairs of vertices in a weighted graph with n vertices and m edges. The first algorithm, STRETCH 2 , runs in ~ O(n 3=2 m 1=2 ) time and finds stretch 2 paths. The second algorithm, STRETCH 7=3 , runs in ~ O(n 7=3 ) time and finds stretch 7/3 paths. Finally, the third algorithm, STRETCH 3 , runs in ~ O(n 2 ) and finds stretch 3 paths. Our algorithms are simpler, more efficient and more accurate than the previously best algorithms ...
Experimental analysis of dynamic all pairs shortest path algorithms
 In Proceedings of the fifteenth annual ACMSIAM symposium on Discrete algorithms
, 2004
"... We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to stat ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to static algorithms on random, realworld and hard instances. Our experimental data suggest that some of the dynamic algorithms and their algorithmic techniques can be really of practical value in many situations. 1
A New Approach to AllPairs Shortest Paths on RealWeighted Graphs
 Theoretical Computer Science
, 2003
"... We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps. Her ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps. Here m and n are the number of edges and vertices, respectively.
Computing Shortest Paths for Any Number of Hops
, 1998
"... In this paper we introduce and investigate a #new" path optimization problem which we denote as the All Hops Optimal Path #AHOP# problem. The problem involves identifying, for all hop counts, the optimal, i.e., minimum weight, path between a given source and destination. Our interest in such a pr ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
In this paper we introduce and investigate a #new" path optimization problem which we denote as the All Hops Optimal Path #AHOP# problem. The problem involves identifying, for all hop counts, the optimal, i.e., minimum weight, path between a given source and destination. Our interest in such a problem originated in the context of QualityofService #QoS# routing in networks. A goal of QoS routing is to improve a network's ability to satisfy user requirements by selecting paths for individual requests, which are based on both the network state and the request requirements, e.g., minimum bandwidth or maximum endtoend delay constraints. In addition, in order to ensure e#cient network operation, it is desirable that the paths also use the minimum possible amount of network resources, e.g., minimize the number of links #hops# used. As a results of these additional constraints, the path selection computation increases in complexity, and it becomes important to amortize this incre...