Results 21  30
of
178
Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing
 In 12 th Symposium on Discrete Algorithms (SODA
, 2001
"... The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar ..."
Abstract

Cited by 32 (6 self)
 Add to MetaCart
(Show Context)
The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar graph. We give a lineartime algorithm that obtains an orderly pair (H
Dominators in Linear Time
, 1997
"... A linear time algorithm is presented for finding dominators in control flow graphs. ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
(Show Context)
A linear time algorithm is presented for finding dominators in control flow graphs.
Integer sorting in O(n √ log log n) expected time and linear space
 In Proc. 33rd IEEE Symposium on Foundations of Computer Science (FOCS
, 2012
"... We present a randomized algorithm sorting n integers in O(n p log logn) expected time and linear space. This improves the previous O(n log logn) bound by Anderson et al. from STOC’95. As an immediate consequence, if the integers are bounded by U, we can sort them in O(n p log logU) expected time. Th ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
(Show Context)
We present a randomized algorithm sorting n integers in O(n p log logn) expected time and linear space. This improves the previous O(n log logn) bound by Anderson et al. from STOC’95. As an immediate consequence, if the integers are bounded by U, we can sort them in O(n p log logU) expected time. This is the first improvement over the O(n log logU) bound obtained with van Emde Boas ’ data structure from FOCS’75. At the heart of our construction, is a technical deterministic lemma of independent interest; namely, that we split n integers into subsets of size at most pn in linear time and space. This also implies improved bounds for deterministic string sorting and integer sorting without multiplication. 1
Succinct Dynamic Data Structures
"... We develop succinct data structures to represent (i) a sequence of values to support partial sum and select queries and update (changing values) and (ii) a dynamic array consisting of a sequence of elements which supports insertion, deletion and access of an element at any given index. For the parti ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
(Show Context)
We develop succinct data structures to represent (i) a sequence of values to support partial sum and select queries and update (changing values) and (ii) a dynamic array consisting of a sequence of elements which supports insertion, deletion and access of an element at any given index. For the partial sums problem...
Integer Priority Queues with Decrease Key in . . .
 STOC'03
, 2003
"... We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete i ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
(Show Context)
We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete in O(log log N) time. Even for the special case of monotone priority queues, where the minimum has to be nondecreasing, the best previous bounds on delete were O((log n) 1/(3−ε) ) and O((log N) 1/(4−ε)). These previous bounds used both randomization and amortization. Our new bounds a deterministic, worstcase, with no restriction to monotonicity, and exponentially faster. As a classical application, for a directed graph with n nodes and m edges with nonnegative integer weights, we get single source shortest paths in O(m + n log log n) time, or O(m + n log log C) ifC is the maximal edge weight. The later solves an open problem of Ahuja, Mehlhorn, Orlin, and
LinearTime PointerMachine Algorithms for Least Common Ancestors, MST Verification, and Dominators
 IN PROCEEDINGS OF THE THIRTIETH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1998
"... We present two new data structure toolsdisjoint set union with bottomup linking, and pointerbased radix sortand combine them with bottomlevel microtrees to devise the first lineartime pointermachine algorithms for offline least common ancestors, minimum spanning tree (MST) verification, ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
(Show Context)
We present two new data structure toolsdisjoint set union with bottomup linking, and pointerbased radix sortand combine them with bottomlevel microtrees to devise the first lineartime pointermachine algorithms for offline least common ancestors, minimum spanning tree (MST) verification, randomized MST construction, and computing dominators in a flowgraph.
Proof Labeling Schemes
 Proc. the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC 2005), Las Vegas
, 2005
"... This paper addresses the problem of locally verifying global properties. Several natural questions are studied, such as “how expensive is local verification? ” and more specifically “how expensive is local verification compared to computation? ” A suitable model is introduced in which these questio ..."
Abstract

Cited by 29 (18 self)
 Add to MetaCart
(Show Context)
This paper addresses the problem of locally verifying global properties. Several natural questions are studied, such as “how expensive is local verification? ” and more specifically “how expensive is local verification compared to computation? ” A suitable model is introduced in which these questions are studied in terms of the number of bits a node needs to communicate. In addition, approaches are presented for the efficient construction of schemes, and upper and lower bounds are established on the cost of schemes for multiple basic problems. The paper also studies the role and cost of unique identities in terms of impossibility and complexity. Previous studies on related questions deal with distributed algorithms that simultaneously compute a configuration and verify that this configuration has a certain desired property. It turns out that this combined approach enables verification to be less costly, since the configuration is typically generated so as to be easily verifiable. In contrast, our approach separates the configuration design from the verification. That is, it first generates the desired configuration without bothering with the need to verify, and then handles the task of constructing a suitable verification scheme. Our approach thus allows for a more modular design of algorithms, and has the potential to aid in verifying properties even when the original design of the structures for maintaining them was done without verification in mind.
Cell probe complexity  a survey
 In 19th Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 1999. Advances in Data Structures Workshop
"... The cell probe model is a general, combinatorial model of data structures. We give a survey of known results about the cell probe complexity of static and dynamic data structure problems, with an emphasis on techniques for proving lower bounds. 1 ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
(Show Context)
The cell probe model is a general, combinatorial model of data structures. We give a survey of known results about the cell probe complexity of static and dynamic data structure problems, with an emphasis on techniques for proving lower bounds. 1
Rectilinear Paths among Rectilinear Obstacles
 Discrete Applied Mathematics
, 1996
"... Given a set of obstacles and two distinguished points in the plane the problem of finding a collision free path subject to a certain optimization function is a fundamental problem that arises in many fields, such as motion planning in robotics, wire routing in VLSI and logistics in operations resear ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
(Show Context)
Given a set of obstacles and two distinguished points in the plane the problem of finding a collision free path subject to a certain optimization function is a fundamental problem that arises in many fields, such as motion planning in robotics, wire routing in VLSI and logistics in operations research. In this survey we emphasize its applications to VLSI design and limit ourselves to the rectilinear domain in which the goal path to be computed and the underlying obstacles are all rectilinearly oriented, i.e., the segments are either horizontal or vertical. We consider different routing environments, and various optimization criteria pertaining to VLSI design, and provide a survey of results that have been developed in the past, present current results and give open problems for future research. 1 Introduction Given a set of obstacles and two distinguished points in the plane, the problem of finding a collision free path subject to a certain optimization function is a fundamental probl...
Distributed Verification of Minimum Spanning Trees
 Proc. 25th Annual Symposium on Principles of Distributed Computing
, 2006
"... The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in ..."
Abstract

Cited by 26 (22 self)
 Add to MetaCart
(Show Context)
The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in a distributed manner, i.e., every node “knows ” which of its own emanating edges belong to the tree. Informally, the distributed MST verification problem is the following. Label the vertices of the graph in such a way that for every node, given (its own label and) the labels of its neighbors only, the node can detect whether these edges are indeed its MST edges. In this paper we present such a verification scheme with a maximum label size of O(log n log W), where n is the number of nodes and W is the largest weight of an edge. We also give a matching lower bound of Ω(log n log W) (except when W ≤ log n). Both our bounds improve previously known bounds for the problem. Our techniques (both for the lower bound and for the upper bound) may indicate a strong relation between the fields of proof labeling schemes and implicit labeling schemes. For the related problem of tree sensitivity also presented by Tarjan, our method yields rather efficient schemes for both the distributed and the sequential settings.