Results 1  10
of
31
A Better Approximation Algorithm for Finding Planar Subgraphs
 J. ALGORITHMS
, 1996
"... The MAXIMUM PLANAR SUBGRAPH problemgiven a graph G, find a largest planar subgraph of Ghas applications in circuit layout, facility layout, and graph drawing. No previous polynomialtime approximation algorithm for this NPComplete problem was known to achieve a performance ratio larger than ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
The MAXIMUM PLANAR SUBGRAPH problemgiven a graph G, find a largest planar subgraph of Ghas applications in circuit layout, facility layout, and graph drawing. No previous polynomialtime approximation algorithm for this NPComplete problem was known to achieve a performance ratio larger than 1=3, which is achieved simply by producing a spanning tree of G. We present the first approximation algorithm for MAXIMUM PLANAR SUBGRAPH with higher performance ratio (4=9 instead of 1=3). We also apply our algorithm to find large outerplanar subgraphs. Last, we show that both MAXIMUM PLANAR SUBGRAPH and its complement, the problem of removing as few edges as possible to leave a planar subgraph, are Max SNPHard.
Practical Problem Solving with Cutting Plane Algorithms in Combinatorial Optimization
, 1994
"... Cutting plane algorithms have turned out to be practically successful computational tools in combinatorial optimization, in particular, when they are embedded in a branch and bound framework. Implementations of such "branch and cut" algorithms are rather complicated in comparison to many p ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
Cutting plane algorithms have turned out to be practically successful computational tools in combinatorial optimization, in particular, when they are embedded in a branch and bound framework. Implementations of such "branch and cut" algorithms are rather complicated in comparison to many purely combinatorial algorithms. The purpose of this article is to give an introduction to cutting plane algorithms from an implementor's point of view. Special emphasis is given to control and data structures used in practically successful implementations of branch and cut algorithms. We also address the issue of parallelization. Finally, we point out that in important applications branch and cut algorithms are not only able to produce optimal solutions but also approximations to the optimum with certified good quality in moderate computation times. We close with an overview of successful practical applications in the literature.
The Thickness of Graphs: A Survey
 Graphs Combin
, 1998
"... We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a ba ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs. Key words: Thickness, maximum planar subgraph, branch and cut 1 Introduction In VLSI circuit design, a chip is represented as a hypergraph consisting of nodes corresponding to macrocells and of hyperedges corresponding to the nets connecting the cells. A chipdesigner has to place the macrocells on a printed circuit board (which usually consists of superimposed layers), according to several designing rules. One of these requirements is to avoid crossings, since crossings lead to undesirable signals. It is therefore desirable to find ways to handle wi...
A Polyhedral Approach to Planar Augmentation and Related Problems
, 1995
"... . Given a planar graph G, the planar (biconnectivity) augmentation problem is to add the minimum number of edges to G such that the resulting graph is still planar and biconnected. Given a nonplanar and biconnected graph, the maximum planar biconnected subgraph problem consists of removing the minim ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
. Given a planar graph G, the planar (biconnectivity) augmentation problem is to add the minimum number of edges to G such that the resulting graph is still planar and biconnected. Given a nonplanar and biconnected graph, the maximum planar biconnected subgraph problem consists of removing the minimum number of edges so that planarity is achieved and biconnectivity is maintained. Both problems are important in Automatic Graph Drawing. In [JM95], the minimum planarizing k augmentation problem has been introduced, that links the planarization step and the augmentation step together. Here, we are given a graph which is not necessarily planar and not necessarily kconnected, and we want to delete some set of edges D and to add some set of edges A such that jDj + jAj is minimized and the resulting graph is planar, kconnected and spanning. For all three problems, we have given a polyhedral formulation by defining three different linear objective functions over the same polytope, namely ...
An Experimental Comparison of Three Graph Drawing Algorithms (Extended Abstract)
, 1995
"... In this paper we present an extensive experimental study... ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
In this paper we present an extensive experimental study...
Comparing and Evaluating Layout Algorithms within GraphEd
 J. Visual Languages and Computing
, 1995
"... This paper is organized as follows. In section 2, we present an overview on the GraphEd system and the implemented graph drawing algorithms. Section 3 explains our evaluation experiments, and Section 4 shows our results. In Section 5 we give a subjective ranking of layout criteria. 2 GraphEd ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper is organized as follows. In section 2, we present an overview on the GraphEd system and the implemented graph drawing algorithms. Section 3 explains our evaluation experiments, and Section 4 shows our results. In Section 5 we give a subjective ranking of layout criteria. 2 GraphEd
Constraints in graph drawing algorithms
 Constraints
, 1998
"... Abstract. Graphs are widely used for information visualization purposes, since they provide a natural and intuitive representation of complex abstract structures. The automatic generation of drawings of graphs has applications a variety of fields such as software engineering, database systems, and g ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Abstract. Graphs are widely used for information visualization purposes, since they provide a natural and intuitive representation of complex abstract structures. The automatic generation of drawings of graphs has applications a variety of fields such as software engineering, database systems, and graphical user interfaces. In this paper, we survey algorithmic techniques for graph drawing that support the expression and satisfaction of userdefined constraints. 1.
Graph Drawing
 Lecture Notes in Computer Science
, 1997
"... INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as software engineering, database systems, visual interfaces, and computeraideddesign. Research on graph drawing has been conducte ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as software engineering, database systems, visual interfaces, and computeraideddesign. Research on graph drawing has been conducted within several diverse areas, including discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and humancomputer interaction (visual languages, graphical user interfaces, software visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 1.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 1.2. Section 1.3 deals with the time complexity of fundamental graph drawin
Drawing Directed Acyclic Graphs: An Experimental Study
, 1996
"... In this paper we consider the class of directed acyclic graphs (DAGs), and present the results of an experimental study on four drawing algorithms specifically developed for DAGs. Our study is conducted on two large test suites of DAGs and yields more than 30 charts comparing the performance of ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
In this paper we consider the class of directed acyclic graphs (DAGs), and present the results of an experimental study on four drawing algorithms specifically developed for DAGs. Our study is conducted on two large test suites of DAGs and yields more than 30 charts comparing the performance of the drawing algorithms with respect to several quality measures, including area, crossings, bends, and aspect ratio. The algorithms exhibit various tradeoffs with respect to the quality measures, and none of them clearly outperforms the others.