Results 1  10
of
336
Nearoptimal sensor placements in gaussian processes
 In ICML
, 2005
"... When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs), choosing sensor locations is a fundamental task. There are several common strategies to address this task, for example, geometry or disk models, placing sensors at the points of highest entropy (variance) in t ..."
Abstract

Cited by 174 (27 self)
 Add to MetaCart
When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs), choosing sensor locations is a fundamental task. There are several common strategies to address this task, for example, geometry or disk models, placing sensors at the points of highest entropy (variance) in the GP model, and A, D, or Eoptimal design. In this paper, we tackle the combinatorial optimization problem of maximizing the mutual information between the chosen locations and the locations which are not selected. We prove that the problem of finding the configuration that maximizes mutual information is NPcomplete. To address this issue, we describe a polynomialtime approximation that is within (1 − 1/e) of the optimum by exploiting the submodularity of mutual information. We also show how submodularity can be used to obtain online bounds, and design branch and bound search procedures. We then extend our algorithm to exploit lazy evaluations and local structure in the GP, yielding significant speedups. We also extend our approach to find placements which are robust against node failures and uncertainties in the model. These extensions are again associated with rigorous theoretical approximation guarantees, exploiting the submodularity of the objective function. We demonstrate the advantages of our approach towards optimizing mutual information in a very extensive empirical study on two realworld data sets.
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
, 1998
"... The goal of the research reported here is to develop rigorous optimization algorithms to apply to some engineering design problems for which direct application of traditional optimization approaches is not practical. This paper presents and analyzes a framework for generating a sequence of approxima ..."
Abstract

Cited by 132 (17 self)
 Add to MetaCart
The goal of the research reported here is to develop rigorous optimization algorithms to apply to some engineering design problems for which direct application of traditional optimization approaches is not practical. This paper presents and analyzes a framework for generating a sequence of approximations to the objective function and managing the use of these approximations as surrogates for optimization. The result is to obtain convergence to a minimizer of an expensive objective function subject to simple constraints. The approach is widely applicable because it does not require, or even explicitly approximate, derivatives of the objective. Numerical results are presented for a 31variable helicopter rotor blade design example and for a standard optimization test example. Key Words: Approximation concepts, surrogate optimization, response surfaces, pattern search methods, derivativefree optimization, design and analysis of computer experiments (DACE), computational engineering. # ...
The sample average approximation method for stochastic discrete optimization
 SIAM Journal on Optimization
, 2001
"... Abstract. In this paper we study a Monte Carlo simulation based approach to stochastic discrete optimization problems. The basic idea of such methods is that a random sample is generated and consequently the expected value function is approximated by the corresponding sample average function. The ob ..."
Abstract

Cited by 127 (16 self)
 Add to MetaCart
Abstract. In this paper we study a Monte Carlo simulation based approach to stochastic discrete optimization problems. The basic idea of such methods is that a random sample is generated and consequently the expected value function is approximated by the corresponding sample average function. The obtained sample average optimization problem is solved, and the procedure is repeated several times until a stopping criterion is satisfied. We discuss convergence rates and stopping rules of this procedure and present a numerical example of the stochastic knapsack problem. Key words. Stochastic programming, discrete optimization, Monte Carlo sampling, Law of Large Numbers, Large Deviations theory, sample average approximation, stopping rules, stochastic knapsack problem AMS subject classifications. 90C10, 90C15
Stochastic Approximation Approach to Stochastic Programming
"... In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of th ..."
Abstract

Cited by 99 (14 self)
 Add to MetaCart
In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte Carlo sampling techniques, namely, the Stochastic Approximation (SA) and the Sample Average Approximation (SAA) methods. Both approaches, the SA and SAA methods, have a long history. Current opinion is that the SAA method can efficiently use a specific (say linear) structure of the considered problem, while the SA approach is a crude subgradient method which often performs poorly in practice. We intend to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems. We extend the analysis to the case of convexconcave stochastic saddle point problems, and present (in our opinion highly encouraging) results of numerical experiments.
Mesh adaptive direct search algorithms for constrained optimization
 SIAM J. Optim
, 2004
"... Abstract. This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS extends the Generalized Pattern Search (GPS) class by allowing local exploration, called polling, in a dense set of directions in the space of optimization variables. This mean ..."
Abstract

Cited by 83 (12 self)
 Add to MetaCart
Abstract. This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS extends the Generalized Pattern Search (GPS) class by allowing local exploration, called polling, in a dense set of directions in the space of optimization variables. This means that under certain hypotheses, including a weak constraint qualification due to Rockafellar, MADS can treat constraints by the extreme barrier approach of setting the objective to infinity for infeasible points and treating the problem as unconstrained. The main GPS convergence result is to identify limit points where the Clarke generalized derivatives are nonnegative in a finite set of directions, called refining directions. Although in the unconstrained case, nonnegative combinations of these directions spans the whole space, the fact that there can only be finitely many GPS refining directions limits rigorous justification of the barrier approach to finitely many constraints for GPS. The MADS class of algorithms extend this result; the set of refining directions may even be dense in R n, although we give an example where it is not. We present an implementable instance of MADS, and we illustrate and compare it with GPS on some test problems. We also illustrate the limitation of our results with examples. Key words. Mesh adaptive direct search algorithms (MADS), convergence analysis, constrained optimization, nonsmooth analysis, Clarke derivatives, hypertangent, contingent cone.
The Empirical Behavior of Sampling Methods for Stochastic Programming
 Annals of Operations Research
, 2002
"... We investigate the quality of solutions obtained from sampleaverage approximations to twostage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain highquality s ..."
Abstract

Cited by 72 (15 self)
 Add to MetaCart
We investigate the quality of solutions obtained from sampleaverage approximations to twostage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain highquality solutions and to verify optimality and nearoptimality of the computed solutions in various ways.
Latin Supercube Sampling for Very High Dimensional Simulations
, 1997
"... This paper introduces Latin supercube sampling (LSS) for very high dimensional simulations, such as arise in particle transport, finance and queuing. LSS is developed as a combination of two widely used methods: Latin hypercube sampling (LHS), and QuasiMonte Carlo (QMC). In LSS, the input variables ..."
Abstract

Cited by 69 (7 self)
 Add to MetaCart
This paper introduces Latin supercube sampling (LSS) for very high dimensional simulations, such as arise in particle transport, finance and queuing. LSS is developed as a combination of two widely used methods: Latin hypercube sampling (LHS), and QuasiMonte Carlo (QMC). In LSS, the input variables are grouped into subsets, and a lower dimensional QMC method is used within each subset. The QMC points are presented in random order within subsets. QMC methods have been observed to lose effectiveness in high dimensional problems. This paper shows that LSS can extend the benefits of QMC to much higher dimensions, when one can make a good grouping of input variables. Some suggestions for grouping variables are given for the motivating examples. Even a poor grouping can still be expected to do as well as LHS. The paper also extends LHS and LSS to infinite dimensional problems. The paper includes a survey of QMC methods, randomized versions of them (RQMC) and previous methods for extending Q...
Valuation of Mortgage Backed Securities Using Brownian Bridges to Reduce Effective Dimension
, 1997
"... The quasiMonte Carlo method for financial valuation and other integration problems has error bounds of size O((log N) k N \Gamma1 ), or even O((log N) k N \Gamma3=2 ), which suggests significantly better performance than the error size O(N \Gamma1=2 ) for standard Monte Carlo. But in hig ..."
Abstract

Cited by 68 (13 self)
 Add to MetaCart
The quasiMonte Carlo method for financial valuation and other integration problems has error bounds of size O((log N) k N \Gamma1 ), or even O((log N) k N \Gamma3=2 ), which suggests significantly better performance than the error size O(N \Gamma1=2 ) for standard Monte Carlo. But in high dimensional problems this benefit might not appear at feasible sample sizes. Substantial improvements from quasiMonte Carlo integration have, however, been reported for problems such as the valuation of mortgagebacked securities, in dimensions as high as 360. We believe that this is due to a lower effective dimension of the integrand in those cases. This paper defines the effective dimension and shows in examples how the effective dimension may be reduced by using a Brownian bridge representation. 1 Introduction Simulation is often the only effective numerical method for the accurate valuation of securities whose value depends on the whole trajectory of interest Mathematics Departmen...
Computer Experiments
, 1996
"... Introduction Deterministic computer simulations of physical phenomena are becoming widely used in science and engineering. Computers are used to describe the flow of air over an airplane wing, combustion of gasses in a flame, behavior of a metal structure under stress, safety of a nuclear reactor, a ..."
Abstract

Cited by 67 (5 self)
 Add to MetaCart
Introduction Deterministic computer simulations of physical phenomena are becoming widely used in science and engineering. Computers are used to describe the flow of air over an airplane wing, combustion of gasses in a flame, behavior of a metal structure under stress, safety of a nuclear reactor, and so on. Some of the most widely used computer models, and the ones that lead us to work in this area, arise in the design of the semiconductors used in the computers themselves. A process simulator starts with a data structure representing an unprocessed piece of silicon and simulates the steps such as oxidation, etching and ion injection that produce a semiconductor device such as a transistor. A device simulator takes a description of such a device and simulates the flow of current through it under varying conditions to determine properties of the device such as its switching speed and the critical voltage at which it switches. A circuit simulator takes a list of devices and the
Bayesian Calibration of Computer Models
 Journal of the Royal Statistical Society, Series B, Methodological
, 2000
"... this paper a Bayesian approach to the calibration of computer models. We represent the unknown inputs as a parameter vector `. Using the observed data we derive the posterior distribution of `, which in particular quantifies the `residual uncertainty' about ..."
Abstract

Cited by 62 (1 self)
 Add to MetaCart
this paper a Bayesian approach to the calibration of computer models. We represent the unknown inputs as a parameter vector `. Using the observed data we derive the posterior distribution of `, which in particular quantifies the `residual uncertainty' about