Results 1  10
of
11
Computations via experiments with kinematic systems
, 2004
"... Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be des ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be designed to operate under (a) Newtonian mechanics or (b) Relativistic mechanics. The theorem proves that valid models of mechanical systems can compute all possible functions on discrete data. The proofs show how any information (coded by some A) can be embedded in the structure of a simple kinematic system and retrieved by simple observations of its behaviour. We reflect on this undesirable situation and argue that mechanics must be extended to include a formal theory for performing experiments, which includes the construction of systems. We conjecture that in such an extended mechanics the functions computed by experiments are precisely those computed by algorithms. We set these theorems and ideas in the context of the literature on the general problem “Is physical behaviour computable? ” and state some open problems.
Computational complexity with experiments as oracles
, 2008
"... We discuss combining physical experiments with machine computations and introduce a form of analoguedigital Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of analoguedigital ma ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
We discuss combining physical experiments with machine computations and introduce a form of analoguedigital Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of analoguedigital machine are studied, in which physical parameters can be set exactly and approximately. Using nonuniform complexity theory, and some probability, we prove theorems that show that these machines can compute more than classical Turing machines. 1
Can newtonian systems, bounded in space, time, mass and energy compute all functions
 Theoretical Computer Science
, 1980
"... In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy (e.g., on the existence of hypercomputers). First, we present a methodology for making a theoretical analysis of computation by physical systems. We focus on the construction and anal ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy (e.g., on the existence of hypercomputers). First, we present a methodology for making a theoretical analysis of computation by physical systems. We focus on the construction and analysis of simple examples that are models of simple subtheories of physical theories. Then we illustrate the methodology, by presenting a simple example for Newtonian Kinematics, and a critique that leads to a substantial extension of the methodology. The example proves that for any set A of natural numbers there exists a 3dimensional Newtonian kinematic system MA, with an infinite family of particles Pn whose total mass is bounded, and whose observable behaviour can decide whether or not n ∈ A for all n ∈ N in constant time. In particular, the example implies that simple Newtonian kinematic systems that are bounded in space, time, mass and energy can compute all possible sets and functions on discrete data. The system is a form of marble run and is a model of a small fragment of Newtonian Kinematics. Next, we use the example to extend the methodology. The marble run shows that a formal theory for computation by physical systems needs strong conditions on the notion of experimental procedure and, specifically, on methods for the construction of equipment. We propose to extend the methodology by defining languages to express experimental procedures and the construction of equipment. We conjecture that the functions computed by experimental computation in Newtonian Kinematics are “equivalent ” to those computed by algorithms, i.e. the partial computable functions. 1
Partial Horn logic and cartesian categories
 ANNALS OF PURE AND APPLIED LOGIC 145 (3) (2007), PP. 314 353
, 2009
"... A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modified. It is developed here in its minimal form, with equality and conjunction, as partial Hor ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modified. It is developed here in its minimal form, with equality and conjunction, as partial Horn logic. Various kinds of logical theory are equivalent: partial Horn theories, quasiequational theories (partial Horn theories without predicate symbols), cartesian theories and essentially algebraic theories. The logic is sound and complete with respect to models in Set, and sound with respect to models in any cartesian (finite limit) category. The simplicity of the quasiequational form allows an easy predicative constructive proof of the free partial model theorem for cartesian theories: that if a theory morphism is given from one cartesian theory to another, then the forgetful (reduct) functor from one model category to the other has a left adjoint. Various examples of quasiequational theory are studied, including those of cartesian categories and of other classes of categories. For each quasiequational theory T another, CartϖT, is constructed, whose models are cartesian categories equipped with models of T. Its initial model, the classifying category for T, has properties similar to those of the syntactic category, but more precise with respect to strict cartesian functors.
Defensive forecasting for linear protocols
 in Proceedings of the Sixteenth International Conference on Algorithmic Learning Theory
, 2005
"... We consider a general class of forecasting protocols, called “linear protocols”, and discuss several important special cases, including multiclass forecasting. Forecasting is formalized as a game between three players: Reality; Forecaster, whose goal is to predict Reality’s next move; and Skeptic, ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
We consider a general class of forecasting protocols, called “linear protocols”, and discuss several important special cases, including multiclass forecasting. Forecasting is formalized as a game between three players: Reality; Forecaster, whose goal is to predict Reality’s next move; and Skeptic, who tries to make money on any lack of agreement between Forecaster and Reality. Our main mathematical result is that for any continuous strategy for Skeptic in a linear protocol there exists a strategy for Forecaster that does not allow Skeptic’s capital to grow. This result is a metatheorem that allows one to transform any constructive law of probability in a linear protocol into a forecasting strategy whose predictions are guaranteed to satisfy this law. We apply this metatheorem to a weak law of large numbers in inner product spaces to obtain a version of the K29 prediction algorithm for linear protocols and show that this version also satisfies the attractive properties of proper calibration and resolution under a suitable choice of its kernel parameter, with no assumptions about the datagenerating mechanism. 1
Stability for Effective Algebras
, 2008
"... We give a general method for showing that all numberings of certain effective algebras are recursively equivalent. The method is based on computable approximationlimit pairs. The approximations are elements of a finitely generated subalgebra, and obtained by computable (nondeterministic) selection ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We give a general method for showing that all numberings of certain effective algebras are recursively equivalent. The method is based on computable approximationlimit pairs. The approximations are elements of a finitely generated subalgebra, and obtained by computable (nondeterministic) selection. The results are a continuation of the work by Mal’cev, who, for example, showed that finitely generated semicomputable algebras are computably stable. In particular, we generalise the result that the recursive reals are computably stable, if the limit operator is assumed to be computable, to spaces constructed by inverse limits.
On the calculating power of Laplace’s demon (Part I)
, 2006
"... We discuss several ways of making precise the informal concept of physical determinism, drawing on ideas from mathematical logic and computability theory. We outline a programme of investigating these notions of determinism in detail for specific, precisely articulated physical theories. We make a s ..."
Abstract
 Add to MetaCart
We discuss several ways of making precise the informal concept of physical determinism, drawing on ideas from mathematical logic and computability theory. We outline a programme of investigating these notions of determinism in detail for specific, precisely articulated physical theories. We make a start on our programme by proposing a general logical framework for describing physical theories, and analysing several possible formulations of a simple Newtonian theory from the point of view of determinism. Our emphasis throughout is on clarifying the precise physical and metaphysical assumptions that typically underlie a claim that some physical theory is ‘deterministic’. A sequel paper is planned, in which we shall apply similar methods to the analysis of other physical theories. Along the way, we discuss some possible repercussions of this kind of investigation for both physics and logic. 1
On the calculating power of Laplace’s demon
"... Abstract. We discuss some of the choices that arise when one tries to make the idea of physical determinism more precise. Broadly speaking, ‘ontological ’ notions of determinism are parameterized by one’s choice of mathematical ideology, whilst ‘epistemological ’ notions of determinism are parameter ..."
Abstract
 Add to MetaCart
Abstract. We discuss some of the choices that arise when one tries to make the idea of physical determinism more precise. Broadly speaking, ‘ontological ’ notions of determinism are parameterized by one’s choice of mathematical ideology, whilst ‘epistemological ’ notions of determinism are parameterized by the choice of an appropriate notion of computability. We present some simple examples to show that these choices can indeed make a difference to whether a given physical theory is ‘deterministic’ or not. Keywords: Laplace’s demon, physical determinism, philosophy of mathematics, notions of computability. 1
Stability of representations of effective partial algebras
, 2011
"... Key words Numberings, recursive equivalence, computable stability, effective partial algebras, computable ..."
Abstract
 Add to MetaCart
Key words Numberings, recursive equivalence, computable stability, effective partial algebras, computable