Results 1  10
of
13
Hypercomputability of quantum adiabatic processes: facts versus prejudices
 http://arxiv.org/quantph/0504101
, 2005
"... Abstract. We give an overview of a quantum adiabatic algorithm for Hilbert’s tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diopha ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Abstract. We give an overview of a quantum adiabatic algorithm for Hilbert’s tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diophantine equations are presented. We also discuss some prejudicial misunderstandings as well as some plausible difficulties faced by the algorithm in its physical implementations. “To believe otherwise is merely to cling to a prejudice which only gives rise to further prejudices... ” 1
Five views of hypercomputation
"... We overview different approaches to the study of hypercomputation and other investigations on the plausibility of the physical Church–Turing thesis. We propose five thesis to classify investigation in this area. Sly does it. Tiptoe catspaws. Slide and creep. ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We overview different approaches to the study of hypercomputation and other investigations on the plausibility of the physical Church–Turing thesis. We propose five thesis to classify investigation in this area. Sly does it. Tiptoe catspaws. Slide and creep.
On the Brightness of the Thomson Lamp. A Prolegomenon to Quantum Recursion Theory
, 2009
"... Some physical aspects related to the limit operations of the Thomson lamp are discussed. Regardless of the formally unbounded and even infinite number of “steps” involved, the physical limit has an operational meaning in agreement with the Abel sums of infinite series. The formal analogies to accele ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Some physical aspects related to the limit operations of the Thomson lamp are discussed. Regardless of the formally unbounded and even infinite number of “steps” involved, the physical limit has an operational meaning in agreement with the Abel sums of infinite series. The formal analogies to accelerated (hyper) computers and the recursion theoretic diagonal methods are discussed. As quantum information is not bound by the mutually exclusive states of classical bits, it allows a consistent representation of fixed point states of the diagonal operator. In an effort to reconstruct the selfcontradictory feature of diagonalization, a generalized diagonal method allowing no quantum fixed points is proposed.
How to acknowledge hypercomputation?
, 2007
"... We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models.
Centre for Discrete Mathematics and Theoretical Computer ScienceOutput concepts for accelerated Turing machines
, 2009
"... The accelerated Turing machine (ATM) is the workhorse of hypercomputation. In certain cases, a machine having run through a countably infinite number of steps is supposed to have decided some interesting question such as the Twin Prime conjecture. One is, however, careful to avoid unnecessary discu ..."
Abstract
 Add to MetaCart
The accelerated Turing machine (ATM) is the workhorse of hypercomputation. In certain cases, a machine having run through a countably infinite number of steps is supposed to have decided some interesting question such as the Twin Prime conjecture. One is, however, careful to avoid unnecessary discussion of either the possible actual use by such a machine of an infinite amount of space, or the difficulty (even if only a finite amount of space is used) of defining an outcome for machines acting like Thomson’s lamp. It is the authors ’ impression that insufficient attention has been paid to introducing a clearly defined counterpart for ATMs of the halting/nonhalting dichotomy for classical Turing computation. This paper tackles the problem of defining the output, or final message, of a machine which has run for a countably infinite number of steps. Nonstandard integers appear quite useful in this regard and we describe several models of computation using filters.
Output concepts for accelerated Turing machines
, 2009
"... The accelerated Turing machine (ATM) is the workhorse of hypercomputation. In certain cases, a machine having run through a countably infinite number of steps is supposed to have decided some interesting question such as the Twin Prime conjecture. One is, however, careful to avoid unnecessary discu ..."
Abstract
 Add to MetaCart
The accelerated Turing machine (ATM) is the workhorse of hypercomputation. In certain cases, a machine having run through a countably infinite number of steps is supposed to have decided some interesting question such as the Twin Prime conjecture. One is, however, careful to avoid unnecessary discussion of either the possible actual use by such a machine of an infinite amount of space, or the difficulty (even if only a finite amount of space is used) of defining an outcome for machines acting like Thomson’s lamp. It is the authors’ impression that insufficient attention has been paid to introducing a clearly defined counterpart for ATMs of the halting/nonhalting dichotomy for classical Turing computation. This paper tackles the problem of defining the output, or final message, of a machine which has run for a countably infinite number of steps. Nonstandard integers appear quite useful in this regard and we describe several models of computation using filters.
Zeno Squeezing of Cellular Automata
 INT. JOURN. OF UNCONVENTIONAL COMPUTING, VOL. 6, PP. 399–416
, 2010
"... ..."
and
, 712
"... We discuss the question of how to operationally validate whether or not a “hypercomputer ” performs better than the known discrete computational models. 1 ..."
Abstract
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer ” performs better than the known discrete computational models. 1
Turing Incomputable Computation
"... A new computing model, called the active element machine (AEM), is presented that demonstrates Turing incomputable computation using quantum random input. The AEM deterministically executes a universal Turing machine (UTM) program η with random active element firing patterns. These firing patterns a ..."
Abstract
 Add to MetaCart
A new computing model, called the active element machine (AEM), is presented that demonstrates Turing incomputable computation using quantum random input. The AEM deterministically executes a universal Turing machine (UTM) program η with random active element firing patterns. These firing patterns are Turing incomputable when the AEM executes a UTM having an unbounded number of computable steps. For an unbounded number of computable steps, if zero information is revealed to an adversary about the AEM’s representation of the UTM’s state and tape and the quantum random bits that help determine η’s computation and zero information is revealed about the dynamic connections between the active elements, then there does not exist a “reverse engineer ” Turing machine that can map the random firing patterns back to the sequence of UTM instructions. This casts a new light on Turing’s notion of a computational procedure. In practical terms, these methods present an opportunity to build a new class of computing machines where the program’s computational steps are hidden. This nonTuring computing behavior may be useful in cybersecurity and in other areas such as machine learning where multiple, dynamic interpretations of firing patterns may be applicable. 1