Results 1 
6 of
6
Computations via experiments with kinematic systems
, 2004
"... Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be des ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be designed to operate under (a) Newtonian mechanics or (b) Relativistic mechanics. The theorem proves that valid models of mechanical systems can compute all possible functions on discrete data. The proofs show how any information (coded by some A) can be embedded in the structure of a simple kinematic system and retrieved by simple observations of its behaviour. We reflect on this undesirable situation and argue that mechanics must be extended to include a formal theory for performing experiments, which includes the construction of systems. We conjecture that in such an extended mechanics the functions computed by experiments are precisely those computed by algorithms. We set these theorems and ideas in the context of the literature on the general problem “Is physical behaviour computable? ” and state some open problems.
Can Newtonian systems, bounded in space, time, mass and energy compute all functions?
"... In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy (e.g., on the existence of hypercomputers). First, we present a methodology for making a theoretical analysis of computation by physical systems. We focus on the construction and anal ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy (e.g., on the existence of hypercomputers). First, we present a methodology for making a theoretical analysis of computation by physical systems. We focus on the construction and analysis of simple examples that are models of simple subtheories of physical theories. Then we illustrate the methodology, by presenting a simple example for Newtonian Kinematics, and a critique that leads to a substantial extension of the methodology. The example proves that for any set A of natural numbers there exists a 3dimensional Newtonian kinematic system MA, with an infinite family of particles Pn whose total mass is bounded, and whose observable behaviour can decide whether or not n ∈ A for all n ∈ N in constant time. In particular, the example implies that simple Newtonian kinematic systems that are bounded in space, time, mass and energy can compute all possible sets and functions on discrete data. The system is a form of marble run and is a model of a small fragment of Newtonian Kinematics. Next, we use the example to extend the methodology. The marble run shows that a formal theory for computation by physical systems needs strong conditions on the notion of experimental procedure and, specifically, on methods for the construction of equipment. We propose to extend the methodology by defining languages to express experimental procedures and the construction of equipment. We conjecture that the functions computed by experimental computation in Newtonian Kinematics are “equivalent” to those computed by algorithms, i.e. the partial computable functions.
12345efghi UNIVERSITY OF WALES SWANSEA REPORT SERIES
"... Newtonian mechanics and infinitely parallel computation by ..."
University of Wales Swansea,
"... In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy, especially on the issue of the existence of hypercomputers. First, we present some principles for making a theoretical analysis of computation by physical systems. We focus on the rol ..."
Abstract
 Add to MetaCart
In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy, especially on the issue of the existence of hypercomputers. First, we present some principles for making a theoretical analysis of computation by physical systems. We focus on the role of simple examples that are models of simple subtheories of physical theories. Secondly, we present such a simple example for Newtonian Kinematics and explore its meaning. We prove that for any set A of natural numbers there exists a 3dimensional Newtonian kinematic system MA, with an infinite family of particles Pn whose total mass is bounded, and whose observable behaviour can decide whether or not n ∈ A for all n ∈ N in constant time. In particular, the theorem implies that simple Newtonian mechanical systems that are bounded in space, time, mass and energy can compute all possible functions on discrete data. The system is a form of marble run and is a model of a small fragment of Newtonian Kinematics. Then, we use the example to reflect on the nature of computation by physical systems. The proof of the theorem shows how any information (coded by some A) can be embedded in the static structure of simple kinematic equipment and retrieved by a simple experimental procedure. This suggests that the idea of equipment is problematic when computing under Newtonian mechanics. The example shows that a formal theory for experimental computation needs restrictive conditions on the notion of experimental procedure and the construction of equipment. We conjecture that using such a restricted mechanics the functions computed by experimental computation are “equivalent ” to those computed by algorithms, i.e. the partial computable functions.
Embedding infinitely parallel computation in Newtonian kinematics
"... First, we reflect on computing sets and functions using measurements from experiments with a class of physical systems. We call this experimental computation. We outline a programme to analyse theoretically experimental computation in which a central problem is: Given a physical theory T, explore an ..."
Abstract
 Add to MetaCart
First, we reflect on computing sets and functions using measurements from experiments with a class of physical systems. We call this experimental computation. We outline a programme to analyse theoretically experimental computation in which a central problem is: Given a physical theory T, explore and classify the computational models that can be embedded in, and abstracted from, the physical systems specified by the physical theory T. We consider the embedding arbitrary sets, functions, programs, and computers into designs for systems that can be specified in subtheories or fragments T of Newtonian kinematics in order to explore some of the physical assumptions of T that allowed its systems to qualify as hypercomputers, i.e., physical models that compute sets and functions that cannot be computed in classical computability theory. In designing systems we work strictly within the chosen theory T and do not concern ourself with whether or not T is valid of the world today. We are interested in exploring the subtheory from a computational point of view and especially in restrictions on the assumptions of T that allow us to return from hypercomputation to classical computation. Secondly, we give a construction of an infinitely parallel machine that can decide all the arithmetical sets of natural numbers. We embed this hypercomputer as system in 3dimensions obeying the laws of a fragment of Newtonian kinematics. In particular, the example shows that communication allowable in Newtonian kinematics is especially powerful. We conclude with further reflections and open problems.