Results 1  10
of
48
Algorithms for Constraint Satisfaction Problems: A Survey
 AI MAGAZINE
, 1992
"... A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic ..."
Abstract

Cited by 372 (0 self)
 Add to MetaCart
A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This paper presents a brief overview of many of these approaches in a tutorial fashion.
The Distributed Constraint Satisfaction Problem: Formalization and Algorithms
 IEEE Transactions on Knowledge and Data Engineering
, 1998
"... In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various applica ..."
Abstract

Cited by 270 (22 self)
 Add to MetaCart
In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various application problems in Distributed Artificial Intelligence can be formalized as distributed CSPs. We present our newly developed technique called asynchronous backtracking that allows agents to act asynchronously and concurrently without any global control, while guaranteeing the completeness of the algorithm. Furthermore, we describe how the asynchronous backtracking algorithm can be modified into a more efficient algorithm called an asynchronous weakcommitment search, which can revise a bad decision without exhaustive search by changing the priority order of agents dynamically. The experimental results on various example problems show that the asynchronous weakcommitment search algorithm ...
Algorithms for Distributed Constraint Satisfaction: A Review
 In CP
, 2000
"... . When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Vario ..."
Abstract

Cited by 203 (7 self)
 Add to MetaCart
. When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Various application problems in multiagent systems can be formalized as distributed CSPs. This paper gives an overview of the existing research on distributed CSPs. First, we briefly describe the problem formalization and algorithms of normal, centralized CSPs. Then, we show the problem formalization and several MAS application problems of distributed CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs, i.e., the asynchronous backtracking, the asynchronous weakcommitment search, the distributed breakout, and distributed consistency algorithms. Finally,we showtwo extensions of the basic problem formalization of distributed CSPs, i.e., handling multiple local variables, and dealing with overconstrained problems. Keywords: Constraint Satisfaction, Search, distributed AI 1.
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 161 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Nogood Recording for Static and Dynamic Constraint Satisfaction Problems
 International Journal of Artificial Intelligence Tools
, 1993
"... Many AI synthesis problems such as planning, scheduling or design may be encoded in a constraint satisfaction problem (CSP). A CSP is typically defined as the problem of finding any consistent labeling for a fixed set of variables satisfying all given constraints between these variables. However, fo ..."
Abstract

Cited by 111 (5 self)
 Add to MetaCart
Many AI synthesis problems such as planning, scheduling or design may be encoded in a constraint satisfaction problem (CSP). A CSP is typically defined as the problem of finding any consistent labeling for a fixed set of variables satisfying all given constraints between these variables. However, for many real tasks, the set of constraints to consider may evolve because of the environment or because of user interactions. The problem we consider here is the solution maintenance problem in such a dynamic CSP (DCSP). We propose a new class of constraint recording algorithms called Nogood Recording that may be used for solving both static and dynamic CSPs. It offers an interesting compromise, polynomially bounded in space, between an ATMSlike approach and the usual static constraint satisfaction algorithms. 1 Introduction The constraint satisfaction problem (CSP) model is widely used to represent and solve various AI related problems and provides fundamental tools in areas such as truth...
Solution reuse in dynamic constraint satisfaction problems
 In Proceedings of the 12th National Conference on Artificial Intelligence
, 1994
"... Many AI problems can be modeled as constraint satisfaction problems (CSP), but many of them are actually dynamic: the set of constraints to consider evolves because of the environment, the user or other agents in the framework of a distributed system. In this context, computing a new solution from s ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Many AI problems can be modeled as constraint satisfaction problems (CSP), but many of them are actually dynamic: the set of constraints to consider evolves because of the environment, the user or other agents in the framework of a distributed system. In this context, computing a new solution from scratch after each problem change is possible, but has two important drawbacks: inefficiency and instability of the successive solutions. In this paper, we propose a method for reusing any previous solution and producing a new one by local changes on the previous one. First we give the key idea and the corresponding algorithm. Then we establish
SATLIB: An Online Resource for Research on SAT
, 2000
"... SATLIB is an online resource for SATrelated research established in June 1998. Its core components, a benchmark suite of SAT instances and a collection of SAT solvers, aim to facilitate empirical research on SAT by providing a uniform testbed for SAT solvers along with freely available implementat ..."
Abstract

Cited by 74 (5 self)
 Add to MetaCart
SATLIB is an online resource for SATrelated research established in June 1998. Its core components, a benchmark suite of SAT instances and a collection of SAT solvers, aim to facilitate empirical research on SAT by providing a uniform testbed for SAT solvers along with freely available implementations of highperforming SAT algorithms. In this article, we give an overview of SATLIB; in particular, we describe its current set of benchmark problems. Currently, the main SATLIB web site
Exploiting the deep structure of constraint problems
 Artificial Intelligence
, 1994
"... We introduce a technique for analyzing the behavior of sophisticated A.I. search programs working on realistic, largescale problems. This approach allows us to predict where, in a space of problem instances, the hardest problems are to be found and where the fluctuations in difficulty are greatest. ..."
Abstract

Cited by 73 (8 self)
 Add to MetaCart
We introduce a technique for analyzing the behavior of sophisticated A.I. search programs working on realistic, largescale problems. This approach allows us to predict where, in a space of problem instances, the hardest problems are to be found and where the fluctuations in difficulty are greatest. Our key insight is to shift emphasis from modelling sophisticated algorithms directly to modelling a search space that captures their principal effects. We compare our model’s predictions with actual data on real problems obtained independently and show that the agreement is quite good. By systematically relaxing our underlying modelling assumptions we identify their relative contribution to the remaining error and then remedy it. We also discuss further applications of our model and suggest how this type of analysis can be generalized to other kinds of A.I. problems. Chapter 1
QuickXPlain: Conflict Detection for Arbitrary Constraint Propagation Algorithms
, 2001
"... Existing conflict detection methods for CSP's such as [de Kleer, 1989; Ginsberg, 1993] cannot make use of powerful propagation which makes them unusable for complex realworld problems. On the other hand, powerful constraint propagation methods lack the ability to extract dependencies or conflicts, ..."
Abstract

Cited by 70 (0 self)
 Add to MetaCart
Existing conflict detection methods for CSP's such as [de Kleer, 1989; Ginsberg, 1993] cannot make use of powerful propagation which makes them unusable for complex realworld problems. On the other hand, powerful constraint propagation methods lack the ability to extract dependencies or conflicts, which makes them unusable for many advanced AI reasoning methods that require conflicts, as well as for interactive applications that require explanations. In this paper, we present a nonintrusive conflict detection algorithm called QUICKXPLAIN that tackles those problems. It can be applied to any propagation or inference algorithm as powerful as it may be. Our algorithm improves the efficiency of direct nonintrusive conflict detectors by recursively partitioning the problem into subproblems of half the size and by immediately skipping those subproblems that do not contain an element of the conflict. QUICKXPLAIN is used as explanation component of an advanced industrial constraintbased configuration tool.