Results 1  10
of
57
Adaptive forwardbackward greedy algorithm for learning sparse representations
 IEEE Trans. Inform. Theory
, 2011
"... Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with nonzero coefficients and reconstructing the target function from noisy observations. Two heuristics that ..."
Abstract

Cited by 52 (8 self)
 Add to MetaCart
Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with nonzero coefficients and reconstructing the target function from noisy observations. Two heuristics that are widely used in practice are forward and backward greedy algorithms. First, we show that neither idea is adequate. Second, we propose a novel combination that is based on the forward greedy algorithm but takes backward steps adaptively whenever beneficial. We prove strong theoretical results showing that this procedure is effective in learning sparse representations. Experimental results support our theory. 1
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
, 2010
"... Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common s ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common subgradient approaches are oblivious to the characteristics of the data being observed. We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradientbased learning. The adaptation, in essence, allows us to find needles in haystacks in the form of very predictive but rarely seenfeatures. Ourparadigmstemsfromrecentadvancesinstochasticoptimizationandonlinelearning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. In a companion paper, we validate experimentally our theoretical analysis and show that the adaptive subgradient approach outperforms stateoftheart, but nonadaptive, subgradient algorithms. 1
Proximal Methods for Hierarchical Sparse Coding
, 2010
"... Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced treestructured sparse regularizatio ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced treestructured sparse regularization norm, which has proven useful in several applications. This norm leads to regularized problems that are difficult to optimize, and we propose in this paper efficient algorithms for solving them. More precisely, we show that the proximal operator associated with this norm is computable exactly via a dual approach that can be viewed as the composition of elementary proximal operators. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows the use of accelerated gradient techniques to solve the treestructured sparse approximation problem at the same computational cost as traditional ones using the ℓ1norm. Our method is efficient and scales gracefully to millions of variables, which we illustrate in two types of applications: first, we consider fixed hierarchical dictionaries of wavelets to denoise natural images. Then, we apply our optimization tools in the context of dictionary learning, where learned dictionary elements naturally organize in a prespecified arborescent structure, leading to a better performance in reconstruction of natural image patches. When applied to text documents, our method learns hierarchies of topics, thus providing a competitive alternative to probabilistic topic models.
Composite Objective Mirror Descent
"... We present a new method for regularized convex optimization and analyze it under both online and stochastic optimization settings. In addition to unifying previously known firstorder algorithms, such as the projected gradient method, mirror descent, and forwardbackward splitting, our method yields n ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
We present a new method for regularized convex optimization and analyze it under both online and stochastic optimization settings. In addition to unifying previously known firstorder algorithms, such as the projected gradient method, mirror descent, and forwardbackward splitting, our method yields new analysis and algorithms. We also derive specific instantiations of our method for commonly used regularization functions, such as ℓ1, mixed norm, and tracenorm. 1
Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 2010
"... The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multiagen ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multiagent coordination, estimation in sensor networks, and largescale machine learning. We develop and analyze distributed algorithms based on dual subgradient averaging, and we provide sharp bounds on their convergence rates as a function of the network size and topology. Our analysis allows us to clearly separate the convergence of the optimization algorithm itself and the effects of communication dependent on the network structure. We show that the number of iterations required by our algorithm scales inversely in the spectral gap of the network and confirm this prediction’s sharpness both by theoretical lower bounds and simulations for various networks. Our approach includes the cases of deterministic optimization and communication as well as problems with stochastic optimization and/or communication.
Stochastic Methods for ℓ1 Regularized Loss Minimization Shai ShalevShwartz
"... We describe and analyze two stochastic methods for ℓ1 regularized loss minimization problems, such as the Lasso. The first method updates the weight of a single feature at each iteration while the second method updates the entire weight vector but only uses a single training example at each iteratio ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
We describe and analyze two stochastic methods for ℓ1 regularized loss minimization problems, such as the Lasso. The first method updates the weight of a single feature at each iteration while the second method updates the entire weight vector but only uses a single training example at each iteration. In both methods, the choice of feature/example is uniformly at random. Our theoretical runtime analysis suggests that the stochastic methods should outperform stateoftheart deterministic approaches, including their deterministic counterparts, when the size of the problem is large. We demonstrate the advantage of stochastic methods by experimenting with synthetic and natural data sets. 1.
Optimal distributed online prediction using minibatches
, 2010
"... Online prediction methods are typically presented as serial algorithms running on a single processor. However, in the age of webscale prediction problems, it is increasingly common to encounter situations where a single processor cannot keep up with the high rate at which inputs arrive. In this wor ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
Online prediction methods are typically presented as serial algorithms running on a single processor. However, in the age of webscale prediction problems, it is increasingly common to encounter situations where a single processor cannot keep up with the high rate at which inputs arrive. In this work, we present the distributed minibatch algorithm, a method of converting many serial gradientbased online prediction algorithms into distributed algorithms. We prove a regret bound for this method that is asymptotically optimal for smooth convex loss functions and stochastic inputs. Moreover, our analysis explicitly takes into account communication latencies between nodes in the distributed environment. We show how our method can be used to solve the closelyrelated distributed stochastic optimization problem, achieving an asymptotically linear speedup over multiple processors. Finally, we demonstrate the merits of our approach on a webscale online prediction problem.
Distributed delayed stochastic optimization
, 2011
"... We analyze the convergence of gradientbased optimization algorithms whose updates depend on delayed stochastic gradient information. The main application of our results is to the development of distributed minimizationalgorithmswhereamasternodeperformsparameterupdateswhile worker nodes compute stoc ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
We analyze the convergence of gradientbased optimization algorithms whose updates depend on delayed stochastic gradient information. The main application of our results is to the development of distributed minimizationalgorithmswhereamasternodeperformsparameterupdateswhile worker nodes compute stochastic gradients based on local information in parallel, which may give rise to delays due to asynchrony. Our main contributionistoshowthatforsmoothstochasticproblems,thedelaysareasymptotically negligible. In application to distributed optimization, we show nnode architectures whose optimization error in stochastic problems—in spite of asynchronous delays—scales asymptotically as O(1 / √ nT), which is known to be optimal even in the absence of delays. 1
NonAsymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning
"... We consider the minimization of a convex objective function defined on a Hilbert space, which is only available through unbiased estimates of its gradients. This problem includes standard machine learning algorithms such as kernel logistic regression and leastsquares regression, and is commonly ref ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
We consider the minimization of a convex objective function defined on a Hilbert space, which is only available through unbiased estimates of its gradients. This problem includes standard machine learning algorithms such as kernel logistic regression and leastsquares regression, and is commonly referred to as a stochastic approximation problem in the operations research community. We provide a nonasymptotic analysis of the convergence of two wellknown algorithms, stochastic gradient descent (a.k.a. RobbinsMonro algorithm) as well as a simple modification where iterates are averaged (a.k.a. PolyakRuppert averaging). Our analysis suggests that a learning rate proportional to the inverse of the number of iterations, while leading to the optimal convergence rate in the strongly convex case, is not robust to the lack of strong convexity or the setting of the proportionality constant. This situation is remedied when using slower decays together with averaging, robustly leading to the optimal rate of convergence. We illustrate our theoretical results with simulations on synthetic and standard datasets. 1