Results 1  10
of
87
Snopt: An SQP Algorithm For LargeScale Constrained Optimization
, 1997
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 328 (18 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse.
Sequential Quadratic Programming
, 1995
"... this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can ..."
Abstract

Cited by 114 (2 self)
 Add to MetaCart
this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can
User's Guide for CFSQP Version 2.5: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints
, 1997
"... CFSQP is a set of C functions for the minimization of the maximum of a set of smooth objective functions (possibly a single one, or even none at all) subject to general smooth constraints (if there is no objective function, the goal is to simply find a point satisfying the constraints). If the initi ..."
Abstract

Cited by 55 (1 self)
 Add to MetaCart
CFSQP is a set of C functions for the minimization of the maximum of a set of smooth objective functions (possibly a single one, or even none at all) subject to general smooth constraints (if there is no objective function, the goal is to simply find a point satisfying the constraints). If the initial guess provided by the user is infeasible for some inequality constraint or some linear equality constraint, CFSQP first generates a feasible point for these constraints; subsequently the successive iterates generated by CFSQP all satisfy these constraints. Nonlinear equality constraints are turned into inequality constraints (to be satisfied by all iterates) and the maximum of the objective functions is replaced by an exact penalty function which penalizes nonlinear equality constraint violations only. When solving problems with many sequentially related constraints (or objectives), such as discretized semiinfinite programming (SIP) problems, CFSQP gives the user the option to use an algo...
Dealing with textureless regions and specular highlights — a progressive space carving scheme using a novel photoconsistency measure
 In Int. Conf. Computer Vision
, 2003
"... We present two extensions to the Space Carving framework. The first is a progressive scheme to better reconstruct surfaces lacking sufficient textures. The second is a novel photoconsistency measure that is valid for both specular and diffuse surfaces, under unknown lighting conditions. 1 ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
We present two extensions to the Space Carving framework. The first is a progressive scheme to better reconstruct surfaces lacking sufficient textures. The second is a novel photoconsistency measure that is valid for both specular and diffuse surfaces, under unknown lighting conditions. 1
Failure of Global Convergence for a Class of Interior Point Methods for Nonlinear Programming
 Mathematical Programming
, 2000
"... Using a simple analytical example, we demonstrate that a class of interior point methods for general nonlinear programming, including some current methods, is not globally convergent. It is shown that those algorithms do produce limit points that are neither feasible nor stationary points of some ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
Using a simple analytical example, we demonstrate that a class of interior point methods for general nonlinear programming, including some current methods, is not globally convergent. It is shown that those algorithms do produce limit points that are neither feasible nor stationary points of some measure of the constraint violation, when applied to a wellposed problem. 1 Introduction Over the past decade a variety of interior point methods for nonconvex nonlinear programming (NLP) have been proposed and found to be efficient in practice (see e.g. [1][4], [6][8], [10][12]). Based on earlier work [5], these methods come in different varieties, such as primal or primaldual methods, line search or trust region methods, with different merit functions, different strategies to update the barrier parameter, etc. For some algorithms, theoretical global convergence properties have been proved. It has been shown that under certain assumptions the considered method converges to a loca...
On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function
 Math. Operstionsforschung und Statistik, Ser. Optimization
, 1983
"... Sequential quadratic programming (SQP) methods are widely used for solving practical optimization problems, especially in structural mechanics. The general structure of SQP methods is briefly introduced and it is shown how these methods can be adapted to distributed computing. However, SQP methods a ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods are widely used for solving practical optimization problems, especially in structural mechanics. The general structure of SQP methods is briefly introduced and it is shown how these methods can be adapted to distributed computing. However, SQP methods are sensitive subject to errors in function and gradient evaluations. Typically they break down with an error message reporting that the line search cannot be terminated successfully. In these cases, a new nonmonotone line search is activated. In case of noisy function values, a drastic improvement of the performance is achieved compared to the version with monotone line search. Numerical results are presented for a set of more than 300 standard test examples.
On Combining Feasibility, Descent and Superlinear Convergence in Inequality Constrained Optimization
 Mathematical Programming
, 1993
"... . Extension of quasiNewton techniques from unconstrained to constrained optimization via Sequential Quadratic Programming (SQP) presents several difficulties. Among these are the possible inconsistency, away from the solution, of first order approximations to the constraints, resulting in infeasibi ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
. Extension of quasiNewton techniques from unconstrained to constrained optimization via Sequential Quadratic Programming (SQP) presents several difficulties. Among these are the possible inconsistency, away from the solution, of first order approximations to the constraints, resulting in infeasibility of the quadratic programs; and the task of selecting a suitable merit function, to induce global convergence. In the case of inequality constrained optimization, both of these difficulties disappear if the algorithm is forced to generate iterates that all satisfy the constraints, and that yield monotonically decreasing objective function values. (Feasibility of the successive iterates is in fact required in many contexts such as in realtime applications or when the objective function is not well defined outside the feasible set). It has been recently shown that this can be achieved while preserving local twostep superlinear convergence. In this note, the essential ingredients for an S...
Theory and implementation of numerical methods based on RungeKutta integration for solving optimal control problems
, 1996
"... ..."
Integrating SQP and branchandbound for Mixed Integer Nonlinear Programming
 Computational Optimization and Applications
, 1998
"... This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems. In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based on branchandbound, but does not require the NLP problem at each node to be solved to optimality. Instead, branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem is solved whilst searching the tree. The nonlinear solver that is considered in this paper is a Sequential Quadratic Programming solver. A numerical comparison of the new method with nonlinear branchandbound is presented and a factor of about 3 improvement over branchandbound is observed...
A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm
 SIAM Journal on Optimization
, 2001
"... . A sequential quadratic programming (SQP) algorithm generating feasible iterates is described and analyzed. What distinguishes this algorithm from previous feasible SQP algorithms proposed by various authors is a reduction in the amount of computation required to generate a new iterate while the pr ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
. A sequential quadratic programming (SQP) algorithm generating feasible iterates is described and analyzed. What distinguishes this algorithm from previous feasible SQP algorithms proposed by various authors is a reduction in the amount of computation required to generate a new iterate while the proposed scheme still enjoys the same global and fast local convergence properties. A preliminary implementation has been tested and some promising numerical results are reported. Key words. sequential quadratic programming, SQP, feasible iterates, feasible SQP, FSQP AMS subject classifications. 49M37, 65K05, 65K10, 90C30, 90C53 PII. S1052623498344562 1.