Results 1 
7 of
7
Estimating highdimensional intervention effects from observation data. The Ann
 of Stat
"... We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can be estimated using intervention calculus. In this paper, we combine these two parts. For each DAG in the estimated equivalence class, we use intervention calculus to estimate the causal effects of the covariates on the response. This yields a collection of estimated causal effects for each covariate. We show that the distinct values in this set can be consistently estimated by an algorithm that uses only local information of the graph. This local approach is computationally fast and feasible in highdimensional problems. We propose to use summary measures of the set of possible causal effects to determine variable importance. In particular, we use the minimum absolute value of this set, since that is a lower bound on the size of the causal effect. We demonstrate the merits of our methods in a simulation study and on a data set about riboflavin production. 1. Introduction. Our
Beware of the DAG!
 NIPS 2008 WORKSHOP ON CAUSALITY
, 2008
"... Directed acyclic graph (DAG) models are popular tools for describing causal relationships and for guiding attempts to learn them from data. In particular, they appear to supply a means of extracting causal conclusions from probabilistic conditional independence properties inferred from purely observ ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Directed acyclic graph (DAG) models are popular tools for describing causal relationships and for guiding attempts to learn them from data. In particular, they appear to supply a means of extracting causal conclusions from probabilistic conditional independence properties inferred from purely observational data. I take a critical look at this enterprise, and suggest that it is in need of more, and more explicit, methodological and philosophical justification than it typically receives. In particular, I argue for the value of a clean separation between formal causal language and intuitive causal assumptions.
Mixed Cumulative Distribution Networks
"... Directed acyclic graphs (DAGs) are a popular framework to express multivariate probability distributions. Acyclic directed mixed graphs (ADMGs) are generalizations of DAGs that can succinctly capture much richer sets of conditional independencies, and are especially useful in modeling the effects of ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Directed acyclic graphs (DAGs) are a popular framework to express multivariate probability distributions. Acyclic directed mixed graphs (ADMGs) are generalizations of DAGs that can succinctly capture much richer sets of conditional independencies, and are especially useful in modeling the effects of latent variables implicitly. Unfortunately, there are currently no parameterizations of general ADMGs. In this paper, we apply recent work on cumulative distribution networks and copulas to propose one general construction for ADMG models. We consider a simple parameter estimation approach, and report some encouraging experimental results. MGs are. Reading off independence constraints from a ADMG can be done with a procedure essentially identical to dseparation (Pearl, 1988, Richardson and Spirtes, 2002). Given a graphical structure, the challenge is to provide a procedure to parameterize models that correspond to the independence constraints of the graph, as illustrated below. Example 1: Bidirected edges correspond to some hidden common parent that has been marginalized. In the Gaussian case, this has an easy interpretation as constraints in the marginal covariance matrix of the remaining variables. Consider the two graphs below.
Causal discovery in multiple models from different experiments
 In Advances in Neural Information Processing Systems 23
, 2010
"... experiments ..."
arXiv: 0810.4214 ESTIMATING HIGHDIMENSIONAL INTERVENTION EFFECTS FROM OBSERVATIONAL DATA
, 810
"... We assume that we have observational data, generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can ..."
Abstract
 Add to MetaCart
We assume that we have observational data, generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can be estimated using intervention calculus. In this paper, we combine these two parts. For each DAG in the estimated equivalence class, we use intervention calculus to estimate the causal effects of the covariates on the response. This yields a collection of estimated causal effects for each covariate. We show that the distinct values in this set can be consistently estimated by an algorithm that uses only local information of the graph. This local approach is computationally fast and feasible in highdimensional problems. We propose to use summary measures of the set of possible causal effects to determine variable importance. In particular, we use the minimum absolute value of this set, since that is a lower bound on the size of the causal effect. We demonstrate the merits of our methods in a simulation study, and on a data set about riboflavin production. 1. Introduction. Our
NIPS 2008 Workshop on Causality Beware of the DAG!
"... Directed acyclic graph (DAG) models are popular tools for describing causal relationships and for guiding attempts to learn them from data. They appear to supply a means of extracting causal conclusions from probabilistic conditional independence properties inferred from purely observational data. I ..."
Abstract
 Add to MetaCart
Directed acyclic graph (DAG) models are popular tools for describing causal relationships and for guiding attempts to learn them from data. They appear to supply a means of extracting causal conclusions from probabilistic conditional independence properties inferred from purely observational data. I take a critical look at this enterprise, and suggest that it is in need of more, and more explicit, methodological and philosophical justification than it typically receives. In particular, I argue for the value of a clean separation between formal causal language and intuitive causal assumptions.