Results 1  10
of
67
Topological quantum computation
 Bull. Amer. Math. Soc. (N.S
"... Abstract. The theory of quantum computation can be constructed from the abstract study of anyonic systems. In mathematical terms, these are unitary topological modular functors. They underlie the Jones polynomial and arise in WittenChernSimons theory. The braiding and fusion of anyonic excitations ..."
Abstract

Cited by 109 (14 self)
 Add to MetaCart
Abstract. The theory of quantum computation can be constructed from the abstract study of anyonic systems. In mathematical terms, these are unitary topological modular functors. They underlie the Jones polynomial and arise in WittenChernSimons theory. The braiding and fusion of anyonic excitations in quantum Hall electron liquids and 2Dmagnets are modeled by modular functors, opening a new possibility for the realization of quantum computers. The chief advantage of anyonic computation would be physical error correction: An error rate scaling like e−αℓ, where ℓ is a length scale, and α is some positive constant. In contrast, the “presumptive ” qubitmodel of quantum computation, which repairs errors combinatorically, requires a fantastically low initial error rate (about 10−4) before computation can be stabilized. Quantum computation is a catchall for several models of computation based on a theoretical ability to manufacture, manipulate and measure quantum states. In this context, there are three areas where remarkable algorithms have been found: searching a data base [15], abelian groups (factoring and discrete logarithm) [19],
A modular functor which is universal for quantum computation
 Comm. Math. Phys
"... Abstract: We show that the topological modular functor from Witten–Chern–Simons theory is universal for quantum computation in the sense that a quantum circuit computation can be efficiently approximated by an intertwining action of a braid on the functor’s state space. A computational model based o ..."
Abstract

Cited by 84 (17 self)
 Add to MetaCart
Abstract: We show that the topological modular functor from Witten–Chern–Simons theory is universal for quantum computation in the sense that a quantum circuit computation can be efficiently approximated by an intertwining action of a braid on the functor’s state space. A computational model based on Chern–Simons theory at a fifth root of unity is defined and shown to be polynomially equivalent to the quantum circuit model. The chief technical advance: the density of the irreducible sectors of the Jones representation has topological implications which will be considered elsewhere. 1.
The twoeigenvalue problem and density of Jones representation of braid groups
 Commun. Math. Phys.
, 2002
"... ..."
Quantum computation and the localization of modular functors
"... Kevin Walker, and Zhenghan Wang. Their work has been the inspiration for this lecture. The mathematical problem of localizing modular functors to neighborhoods of points is shown to be closely related to the physical problem of engineering a local Hamiltonian for a computationally universal quantum ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
Kevin Walker, and Zhenghan Wang. Their work has been the inspiration for this lecture. The mathematical problem of localizing modular functors to neighborhoods of points is shown to be closely related to the physical problem of engineering a local Hamiltonian for a computationally universal quantum medium. For genus = 0 surfaces, such a local Hamiltonian is mathematically defined. Braiding defects of this medium implements a representation associated to the Jones polynomial and this representation is known to be universal for quantum computation. 1 The Picture Principle Reality has the habit of intruding on the prodigies of purest thought and encumbering them with unpleasant embellishments. So it is astonishing when the chthonian hammer of the engineer resonates precisely to the gossamer fluttering of theory. Such a moment may soon be at hand in the practice and theory of quantum computation. The most compelling theoretical question, “localization, ” is yielding an answer which points the way to a solution of Based on lectures prepared for the joint Microsoft/University of Washington celebration
On traced monoidal closed categories
, 2008
"... ... focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into Int C has a right adjoint. Thus, every traced monoidal closed category arises as a monoidal coreflexive full subcategory of a tortile monoidal category. From this, we der ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
... focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into Int C has a right adjoint. Thus, every traced monoidal closed category arises as a monoidal coreflexive full subcategory of a tortile monoidal category. From this, we derive a series of facts for traced models of linear logic, and some for models of fixedpoint computation. To make the paper more selfcontained, we also include various background results for traced monoidal categories.
On exotic modular tensor categories
 Commun. Contemp. Math
"... Abstract. We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular Smatrix S and −S has both topological and physical significance, so in our convention there are a tot ..."
Abstract

Cited by 13 (7 self)
 Add to MetaCart
Abstract. We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular Smatrix S and −S has both topological and physical significance, so in our convention there are a total of 70 UMTCs of rank ≤ 4. In particular, there are two trivial UMTCs with S = (±1). Each such UMTC can be obtained from 10 nontrivial prime UMTCs by direct product, and some symmetry operations. Explicit data of the 10 nontrivial prime UMTCs are given in Section 5. Relevance of UMTCs to topological quantum computation and various conjectures are given in Section 6. 1.
Quantum information processing in continuous time
, 2004
"... Quantum mechanical computers can solve certain problems asymptotically faster than any classical computing device. Several fast quantum algorithms are known, but the nature of quantum speedup is not well understood, and inventing new quantum algorithms seems to be difficult. In this thesis, we explo ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Quantum mechanical computers can solve certain problems asymptotically faster than any classical computing device. Several fast quantum algorithms are known, but the nature of quantum speedup is not well understood, and inventing new quantum algorithms seems to be difficult. In this thesis, we explore two approaches to designing quantum algorithms based on continuoustime Hamiltonian dynamics. In quantum computation by adiabatic evolution, the computer is prepared in the known ground state of a simple Hamiltonian, which is slowly modified so that its ground state encodes the solution to a problem. We argue that this approach should be inherently robust against lowtemperature thermal noise and certain control errors, and we support this claim using simulations. We then show that any adiabatic algorithm can be implemented in a different way, using only a sequence of measurements of the Hamiltonian. We illustrate how this approach can achieve quadratic speedup for the unstructured search problem. We also demonstrate two examples of quantum speedup by quantum walk, a quantum mechanical analog of random walk. First, we consider the problem of searching a region
Quantum automata, braid group and link polynomials
"... The spin–network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah–Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite–states and ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
The spin–network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah–Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite–states and discrete–time quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are colored Jones polynomials. The automaton calculation of the polynomial of (the plat closure of) a link L on 2N strands at any fixed root of unity is shown to be bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index 2N, on the other. The growth rate of the time complexity function in terms of the integer k appearing in the root of unity q can be estimated to be (polynomially) bounded by resorting to the field theoretical background given by the Chern–Simons theory. Key words: link invariants; braid group representations; Chern–Simons theory; quantum automata; Racah–Wigner algebra; spin–network simulator; topological quantum computation; Uq(su(2)) representation theory. 1 1
A brief survey of quantum programming languages
 In Proceedings of the 7th International Symposium on Functional and Logic Programming
, 2004
"... Abstract. This article is a brief and subjective survey of quantum programming language research. 1 Quantum Computation Quantum computing is a relatively young subject. It has its beginnings in 1982, when Paul Benioff and Richard Feynman independently pointed out that a quantum mechanical system can ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Abstract. This article is a brief and subjective survey of quantum programming language research. 1 Quantum Computation Quantum computing is a relatively young subject. It has its beginnings in 1982, when Paul Benioff and Richard Feynman independently pointed out that a quantum mechanical system can be used to perform computations [11, p.12]. Feynman’s interest in quantum computation was motivated by the fact that it is computationally very expensive to simulate quantum physical systems on classical computers. This is due to the fact that such simulation involves the manipulation is extremely large matrices (whose dimension is exponential in the size of the quantum system being simulated). Feynman conceived of quantum computers as a means of simulating nature much more efficiently. The evidence to this day is that quantum computers can indeed perform certain tasks more efficiently than classical computers. Perhaps the bestknown example is Shor’s factoring algorithm, by which a quantum computer can find
Estimating Jones polynomials is a complete problem for one clean qubit, http://arxiv.org/abs/0707.2831
"... It is known that evaluating a certain approximation to the Jones polynomial for the plat closure of a braid is a BQPcomplete problem. That is, this problem exactly captures the power of the quantum circuit model[12, 3, 1]. The one clean qubit model is a model of quantum computation in which all but ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
It is known that evaluating a certain approximation to the Jones polynomial for the plat closure of a braid is a BQPcomplete problem. That is, this problem exactly captures the power of the quantum circuit model[12, 3, 1]. The one clean qubit model is a model of quantum computation in which all but one qubit starts in the maximally mixed state. One clean qubit computers are believed to be strictly weaker than standard quantum computers, but still capable of solving some classically intractable problems [20]. Here we show that evaluating a certain approximation to the Jones polynomial at a fifth root of unity for the trace closure of a braid is a complete problem for the one clean qubit complexity class. That is, a one clean qubit computer can approximate these Jones polynomials in time polynomial in both the number of strands and number of crossings, and the problem of simulating a one clean qubit computer is reducible to approximating the Jones polynomial of the trace closure of a braid. 1 One Clean Qubit The one clean qubit model of quantum computation originated as an idealized model of quantum computation on highly mixed initial states, such as appear in NMR implementations[20, 4]. In this model, one is given an initial quantum state consisting of a single qubit in the pure state 0〉, and n qubits in the maximally mixed