Results 1 
2 of
2
Modular monad transformers
 In ESOP ’09: Proceedings of the 18th European Symposium on Programming Languages and Systems
, 2009
"... Abstract. During the last two decades, monads have become an indispensable tool for structuring functional programs with computational effects. In this setting, the mathematical notion of a monad is extended with operations that allow programmers to manipulate these effects. When several effects are ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
(Show Context)
Abstract. During the last two decades, monads have become an indispensable tool for structuring functional programs with computational effects. In this setting, the mathematical notion of a monad is extended with operations that allow programmers to manipulate these effects. When several effects are involved, monad transformers can be used to build up the required monad one effect at a time. Although this seems to be modularity nirvana, there is a catch: in addition to the construction of a monad, the effectmanipulating operations need to be lifted to the resulting monad. The traditional approach for lifting operations is nonmodular and adhoc. We solve this problem with a principled technique for lifting operations that makes monad transformers truly modular. 1
Monad Transformers as Monoid Transformers
"... The incremental approach to modular monadic semantics constructs complex monads by using monad transformers to add computational features to a preexisting monad. A complication of this approach is that the operations associated to the preexisting monad need to be lifted to the new monad. In a compa ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
(Show Context)
The incremental approach to modular monadic semantics constructs complex monads by using monad transformers to add computational features to a preexisting monad. A complication of this approach is that the operations associated to the preexisting monad need to be lifted to the new monad. In a companion paper by Jaskelioff, the lifting problem has been addressed in the setting of system F ω. Here, we recast and extend those results in a categorytheoretic setting. We abstract and generalize from monads to monoids (in a monoidal category), and from monad transformers to monoid transformers. The generalization brings more simplicity and clarity, and opens the way for lifting of operations with applicability beyond monads. Key words: Monad, Monoid, Monoidal Category