Results 1  10
of
45
Distributed compressed sensing
, 2005
"... Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algori ..."
Abstract

Cited by 84 (21 self)
 Add to MetaCart
Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multisignal ensembles that exploit both intra and intersignal correlation structures. The DCS theory rests on a new concept that we term the joint sparsity of a signal ensemble. We study in detail three simple models for jointly sparse signals, propose algorithms for joint recovery of multiple signals from incoherent projections, and characterize theoretically and empirically the number of measurements per sensor required for accurate reconstruction. We establish a parallel with the SlepianWolf theorem from information theory and establish upper and lower bounds on the measurement rates required for encoding jointly sparse signals. In two of our three models, the results are asymptotically bestpossible, meaning that both the upper and lower bounds match the performance of our practical algorithms. Moreover, simulations indicate that the asymptotics take effect with just a moderate number of signals. In some sense DCS is a framework for distributed compression of sources with memory, which has remained a challenging problem for some time. DCS is immediately applicable to a range of problems in sensor networks and arrays.
Random projections of smooth manifolds
 Foundations of Computational Mathematics
, 2006
"... We propose a new approach for nonadaptive dimensionality reduction of manifoldmodeled data, demonstrating that a small number of random linear projections can preserve key information about a manifoldmodeled signal. We center our analysis on the effect of a random linear projection operator Φ: R N ..."
Abstract

Cited by 80 (23 self)
 Add to MetaCart
We propose a new approach for nonadaptive dimensionality reduction of manifoldmodeled data, demonstrating that a small number of random linear projections can preserve key information about a manifoldmodeled signal. We center our analysis on the effect of a random linear projection operator Φ: R N → R M, M < N, on a smooth wellconditioned Kdimensional submanifold M ⊂ R N. As our main theoretical contribution, we establish a sufficient number M of random projections to guarantee that, with high probability, all pairwise Euclidean and geodesic distances between points on M are wellpreserved under the mapping Φ. Our results bear strong resemblance to the emerging theory of Compressed Sensing (CS), in which sparse signals can be recovered from small numbers of random linear measurements. As in CS, the random measurements we propose can be used to recover the original data in R N. Moreover, like the fundamental bound in CS, our requisite M is linear in the “information level” K and logarithmic in the ambient dimension N; we also identify a logarithmic dependence on the volume and conditioning of the manifold. In addition to recovering faithful approximations to manifoldmodeled signals, however, the random projections we propose can also be used to discern key properties about the manifold. We discuss connections and contrasts with existing techniques in manifold learning, a setting where dimensionality reducing mappings are typically nonlinear and constructed adaptively from a set of sampled training data.
Bayesian Compressed Sensing via Belief Propagation
, 2010
"... Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, subNyquist signal acquisition. When a statistical characterization of the signal is available, Bayesian inference can comple ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, subNyquist signal acquisition. When a statistical characterization of the signal is available, Bayesian inference can complement conventional CS methods based on linear programming or greedy algorithms. We perform asymptotically optimal Bayesian inference using belief propagation (BP) decoding, which represents the CS encoding matrix as a graphical model. Fast computation is obtained by reducing the size of the graphical model with sparse encoding matrices. To decode a length signal containing large coefficients, our CSBP decoding algorithm uses ( log ()) measurements and ( log 2 ()) computation. Finally, although we focus on a twostate mixture Gaussian model, CSBP is easily adapted to other signal models.
Compressed Sensing Reconstruction via Belief Propagation
, 2006
"... Compressed sensing is an emerging field that enables to reconstruct sparse or compressible signals from a small number of linear projections. We describe a specific measurement scheme using an LDPClike measurement matrix, which is a realvalued analogue to LDPC techniques over a finite alphabet. We ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
Compressed sensing is an emerging field that enables to reconstruct sparse or compressible signals from a small number of linear projections. We describe a specific measurement scheme using an LDPClike measurement matrix, which is a realvalued analogue to LDPC techniques over a finite alphabet. We then describe the reconstruction details for mixture Gaussian signals. The technique can be extended to additional compressible signal models. 1
Observed universality of phase transitions in highdimensional geometry, with implications for modern data analysis and signal
, 1906
"... Abstract. We review connections between phase transitions in highdimensional combinatorial geometry and phase transitions occurring in modern highdimensional data analysis and signal processing. In data analysis, such transitions arise as abrupt breakdown of linear model selection, robust data fit ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
Abstract. We review connections between phase transitions in highdimensional combinatorial geometry and phase transitions occurring in modern highdimensional data analysis and signal processing. In data analysis, such transitions arise as abrupt breakdown of linear model selection, robust data fitting or compressed sensing reconstructions, when the complexity of the model or the number of outliers increases beyond a threshold. In combinatorial geometry these transitions appear as abrupt changes in the properties of face counts of convex polytopes when the dimensions are varied. The thresholds in these very different problems appear in the same critical locations after appropriate calibration of variables. These thresholds are important in each subject area: for linear modelling, they place hard limits on the degree to which the nowubiquitous highthroughput data analysis can be successful; for robustness, they place hard limits on the degree to which standard robust fitting methods can tolerate outliers before breaking down; for compressed sensing, they define the sharp boundary of the
Identification of matrices having a sparse representation
, 2007
"... We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). ..."
Abstract

Cited by 25 (7 self)
 Add to MetaCart
We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). Of particular interest is the dictionary of timefrequency shift matrices and its role for channel estimation and identification in communications engineering. We present recovery results for BP with the timefrequency shift dictionary and various dictionaries of random matrices.
Compressive Sensing
, 2010
"... Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many poten ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.
An InformationTheoretic Approach to Distributed Compressed Sensing
 in Proc. 43rd Allerton Conf. Communication, Control, and Computing
, 2005
"... Compressed sensing is an emerging field based on the revelation that a small group of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Compressed sensing is an emerging field based on the revelation that a small group of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multisignal ensembles that exploit both intra and intersignal correlation structures. The DCS theory rests on a concept that we term the joint sparsity of a signal ensemble. We study a model for jointly sparse signals, propose algorithms for joint recovery of multiple signals from incoherent projections, and characterize the number of measurements per sensor required for accurate reconstruction. We establish a parallel with the SlepianWolf theorem from information theory and establish upper and lower bounds on the measurement rates required for encoding jointly sparse signals. In some sense DCS is a framework for distributed compression of sources with memory, which has remained a challenging problem for some time. DCS is immediately applicable to a range of problems in sensor networks and arrays. 1
Precise Undersampling Theorems
"... Undersampling Theorems state that we may gather far fewer samples than the usual sampling theorem while exactly reconstructing the object of interest – provided the object in question obeys a sparsity condition, the samples measure appropriate linear combinations of signal values, and we reconstruc ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
Undersampling Theorems state that we may gather far fewer samples than the usual sampling theorem while exactly reconstructing the object of interest – provided the object in question obeys a sparsity condition, the samples measure appropriate linear combinations of signal values, and we reconstruct with a particular nonlinear procedure. While there are many ways to crudely demonstrate such undersampling phenomena, we know of only one approach which precisely quantifies the true sparsityundersampling tradeoff curve of standard algorithms and standard compressed sensing matrices. That approach, based on combinatorial geometry, predicts the exact location in sparsityundersampling domain where standard algorithms exhibit phase transitions in performance. We review the phase transition approach here and describe the broad range of cases where it applies. We also mention exceptions and state challenge problems for future research. Sample result: one can efficiently reconstruct a ksparse signal of length N from n measurements, provided n � 2k · log(N/n), for (k, n, N) large, k ≪ N.
Compressed Sensing over the Grassmann Manifold: A Unified Analytical Framework
"... Abstract—It is well known that compressed sensing problems reduce to finding the sparse solutions for large underdetermined systems of equations. Although finding the sparse solutions in general may be computationally difficult, starting with the seminal work of [2], it has been shown that linear p ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
Abstract—It is well known that compressed sensing problems reduce to finding the sparse solutions for large underdetermined systems of equations. Although finding the sparse solutions in general may be computationally difficult, starting with the seminal work of [2], it has been shown that linear programming techniques, obtained from an l1norm relaxation of the original nonconvex problem, can provably find the unknown vector in certain instances. In particular, using a certain restricted isometry property, [2] shows that for measurement matrices chosen from a random Gaussian ensemble, l1 optimization can find the correct solution with overwhelming probability even when the support size of the unknown vector is proportional to its dimension. The paper [1] uses results on neighborly polytopes from [6] to give a “sharp ” bound on what this proportionality should be in the Gaussian case. In this paper we shall focus